COMP 2718: Shell Scripts: Part 3

By: Dr. Andrew Vardy

Outline

The Compound Commands: [[]] and (())
until Loops

The for Loop: Original Form

The for Loop: C Language Form

vV VvyYyywy

The Compound Commands: [[]] and (())

The test command has a more modern variant. Recall, the usual
structure of test using square brackets. e.g.:

[-e "$file"]

The newer form is the compound command [[1] and has two new
abilities. The first, has to do with regular expressions (to be covered
soon). The second is that the == operator supports matching with
wildcards:

$ FILE=foo.bar

$ if [[$FILE == foo.*]]; then

> echo "$FILE matches pattern 'foo.x'"
> fi

foo.bar matches pattern 'foo.x'

The compound command (()) is used for artithmetic truth
tests. Such a test has an exit status of 0 (success) whenever the
embedded expression is non-zero. For example:

$ if ((1)); then echo "It is true."; fi
It is true.

$ if ((0)); then echo "It is true."; fi
$

(C) is designed for integers only. This allows for the following
features:

» We can go ahead and use the symbols <, >, and == (rather
than -1t, -gt, and -eq)
> Variable names don't need to be prefixed with $

Consider the following example. ..

INT=$1
if ((INT == 0)); then
echo "INT is zero."
else
if ((INT < 0)); then
echo "INT is negative."
else
echo "INT is positive."
fi
if (C ((INT % 2)) == 0)); then
echo "INT is even."
else
echo "INT is odd."
fi

until Loops

The syntax of an until loop is much like a while loop:

until condition_commands; do commands; done

The choice of while vs. until is rather arbitrary—either can be
used. Choose whichever seems to match the logic of the situation.

e.g. This script prints numbers in decimal, octal, and hex up to 16.
i=0
until ["$i" -eq 17 1; do
printf "dec: ’%d, \toctal: %o, \thex: %X\n" $i $i $i
i=§(($1i + 1))

done

Notice the printf command. Most programming languages have
an equivalent command that provides a controlled way of displaying
text output. It is preferable to echo when you want fine-grained
control.

Lets see how this script is simplified using the (()) compound
command. First the original:
i=0
until ["$i" -eq 17]; do
printf "dec: ’%d, \toctal: %o, \thex: %X\n" $i $i $i
i=$(($1 + 1))

done

i=0

until ((i == 17)); do
printf "dec: ’%d, \toctal: %o, \thex: %X\n" $i $i $i
((i=i+1))

The for Loop: Original Form

The original bash for loop has the following form:

for variable [in words]; do
commands
done

The variable is typically set to each of the values in the list of items
denoted words. For each of these items, variable has that value
and commands is executed.

We can illustrate a basic for loop right on the command-line:

$ for i in A B C D; do echo $i; done

O Qw =

for loops work really well with various types of expansions. For
example, pathname expansion (globbing):

$ for i in distros*.txt; do echo $i; done

distros-by-date.txt
distros-dates.txt
distros-key-names.txt

Brace expansion:
$ for i in {A..C}; do echo $i; done

A
B
C

The following shows the use of command substitution to generate
the list of words that the for loop operates on. The strings
command separates the file into readable words.

if [[-r $1]]1; then
max_word=
max_len=0
for j in $(strings $1); do
len=$(echo $j | wc -c)
if ((len > max_len)); then
max_len=$len
max_word=3j
fi
done
echo "DONE"
echo "'$max_word' ($max_len characters)"

The for Loop: C Language Form

bash supports a second type of for loop that borrows its syntax
from C (also C++ and Java):

for ((expressionl; expression2; expression3)); do
commands
done

The expressions (1, 2, and 3) are arithmetic expressions. This form
is equivalent to the following:

((expressionl))

while ((expression2)); do
commands
((expression3))

done

Here is an example of the C-style for loop:
for ((i=0; i<5; i=i+1)); do
echo $i

S W N - O

