
COMP 2718: Shell Scripts: Part 2

By: Dr. Andrew Vardy



Outline

I Control Operators
I Shell Functions
I Local Variables
I read - Read Values form Standard Input
I IFS
I Loops
I break
I continue
I Reading Files within Loops



Control Operators

The following control operators can achieve branching without an
if statement:

command1 && command2

and

command1 || command2

With && command1 is executed and only if it succeeds (status 0) is
command2 executed.

With || command1 is executed and only if it fails (status 1-255) is
command2 executed.



For example, the following makes a temp directory and if that is
successfull, changes into it:

$ mkdir temp && cd temp

The following tests for the existence of a temp directory and if that
test fails (i.e. temp) doesn’t exist then it creates it.

$ [ -d temp ] || mkdir temp

Something like this is very useful in scripts that require some
precondition. For example, if we want to quit if the file input.dat
doesn’t exist, we could do the following:

[ -e input.dat ] || exit 1



Shell Functions

Structured programming involves breaking your problem down to
smaller pieces. One of the main mechanisms to support structured
programming are functions.

Shell functions are embedded into scripts and act like standalone
programs. Theey have the following form:

[function] name {
commands
return

}

The word ‘function’ can be ommitted.



Here is a minimal example:

--------------------------------------------------
function funct {

echo "Step 2"
return

}

echo "Step 1"
funct
echo "Step 3"
--------------------------------------------------

Note that a function has to be defined prior to its being used.



Local Variables

In the scripts we have seen so far, all variables have been global. It
is often useful to use variables that are purely local to a function.
Otherwise, there is the possibility of name conflicts with global
variables and with unintentional side effects.

We define a local variable as follows:

local name[=value]

The variable’s scope is limited to the current function and any
functions it may call. Lets see an example. . .



foo=0 # global variable foo

funct_1 () {
local foo # variable foo local to funct_1
foo=1
echo "funct_1: foo = $foo"

}
funct_2 () {

local foo # variable foo local to funct_2
foo=2
echo "funct_2: foo = $foo"

}

echo "global: foo = $foo"
funct_1
echo "global: foo = $foo"
funct_2
echo "global: foo = $foo"



Example: check_maxlines

Lets see an example function that illustrates many of the scripting
concepts discussed so far:

I Functions
I Local variables
I Branching and test statement usage

This script will also introduce the use of arguments within a
function. Once again, the arguments are denoted $1, $2, . . .

This script’s job is to check whether the number of lines within a
file ($1) is greater than a certain number ($2). . .



function check_maxlines {
local file=$1
local n=$2
if [ ! -e $file ]; then

echo "$file missing."
return

fi

count=$(wc -l < $file)
if [ $count -ge $n ]; then

echo "$file has too many lines: $count"
else

echo "$file has less than $n lines"
fi

}

# Example usage
# check_maxlines /tmp/foo.txt 100



In order to get a count of the number of lines in a file the
check_maxlines function does the following:

count=$(wc -l < $file)

Why redirect the file to standard input? Try running the following:

$ wc -l ~/.profile
22 /home/av/.profile

The behaviour of wc is to print the number of lines and the name of
the file. By redirecting from standard input there is no filename to
print and the number stands on its own!

$ wc -l < ~/.profile
22



We can execute this script as usual: ./check_maxlines.sh.

We can also make the function available by putting it in ~/.bashrc.
Once a change is made to ~/.bashrc you either have to start up a
new shell, or use source to re-run ~/.bashrc:

source ~/.bashrc

We can also remove the final line from check_maxlines.sh and
make it a pure function. Then we can source
check_maxlines.sh and run the function on the command-line as
follows:

check_maxlines /tmp/foo.txt 100

Notice there is no .sh at the end. We are running the function, not
the script.



read - Read Values form Standard Input
Many scripts need the ability to read from standard input. The read
builtin achieves this. By default, read reads line-by-line from stdin:

read [-options] [variable...]

It reads from standard input into one or more variables. If no
variables are specified it reads into a shell variable called REPLY.
One basic workflow is to use read to get values from a user:

$ echo "Please enter an integer: " ; read int

Please enter an integer:
56

$ echo $int
56



The following script reads multiple values:

---------------------------------------------------
echo -n "Enter one or more values > "
read var1 var2 var3
echo "var1 = '$var1'"
echo "var2 = '$var2'"
echo "var3 = '$var3'"
---------------------------------------------------

Run this to see different cases such as when less than 3 or more
than 3 values are provided.



The following are some options to read:





The following example combines these options:

-p prompt Displays prompt string
-s Silent mode

-t seconds Terminate after timeout (with non-zero status)

---------------------------------------------------
if read -t 10 -sp "Enter passphrase > " secret_pass; then

echo -e "\nSecret passphrase = '$secret_pass'"
else

echo -e "\nInput timed out" >&2
exit 1

fi
---------------------------------------------------



IFS

How does read partition a line of text? It uses a variable called IFS
(Internal Field Separator). By default, IFS consists of a space, a tab,
and a newline character. So any of these can be used as separators.

But maybe you want to use ‘,’ as a separator. If so, do the following:

$ IFS=',' read a b c

This looks a bit weird, we have a variable assignment followed by a
command. The purpose is to assign IFS to this custom value for
only the command that follows. Effectively, it is a temporary setting
of IFS as illustrated below. . .



$ read a b <<< "Alpha Beta"

$ echo "a: $a, b: $b"
a: Alpha, b: Beta

Notice the operator <<<. This is called a here string. It simply
takes the given string (“Alpha Beta”) and feeds it to the command
(read) as standard input. Lets continue by changing IFS and
reading a comma-separated string:

$ IFS=','
$ read a b <<< "Alpha,Beta"
$ echo "a: $a, b: $b"
a: Alpha, b: Beta

That worked nicely, but the effect of setting IFS is lasting. If we go
back to reading whitespace-separated strings we will have a problem:

$ read a b <<< "Alpha Beta"
$ echo "a: $a, b: $b"
a: Alpha Beta, b:



Loops

We will look at while and until loops, as well as the continue
and break statements. Lets start with the syntax of a while loop:

while condition_commands; do commands; done

Similar to if the condition_commands are executed and if
successfull (exit status 0) then the loop is entered and commands
are executed. This cyle will repeat until condition_commands
yield a non-zero exit status.



Here’s a simple example that just counts to 5:

---------------------------------------------------
count=1
while [ $count -le 5 ]; do

echo $count
count=$(($count + 1))

done
echo "Finished."
---------------------------------------------------



break
It is often necessary to break out of a loop. The break command
immediately terminates the loop, passing control to the next
statement after the loop. The following is a refactoring of our
count-to-5 script:

---------------------------------------------------
count=1
while true; do

if [ $count -gt 5 ]; then
break

fi
echo $count
count=$(($count + 1))

done
echo "Finished."
---------------------------------------------------

Notice that we had in addition to moving the test, we also had to
change it from -le to -gt.



continue
The continue command skips the remainder of the loop’s body
and proceeds with the next iteration. The following example script
prints the even numbers less than or equal to 10:

---------------------------------------------------
i=1
while [ $i -le 10 ]; do

if [ $(($i % 2)) -ne 0 ]; then
# Increment count, then
i=$(($i + 1))
continue

fi
echo $i
i=$(($i + 1))

done
---------------------------------------------------

Note: This script could easily be shortened.



Reading Files within Loops

A while loop can process standard input. This provides a
mechanism to read from a file if we redirect standard input to come
from a particular file. The following example illustrates this:

---------------------------------------------------
while read line ; do

if [ -z "$line" ] ; then
continue # Skip blank lines

fi
if [ "$line" == "stop" ] ; then

break # Exit the loop
fi
echo $line

done < input.txt
---------------------------------------------------



If content of input.txt is as follows:

asdf
qwerty

blah
blah
stop
still going?
nope

The script’s output is the following:

asdf
qwerty
blah
blah


