
COMP 2718: Shell Scripts: Part 1

By: Dr. Andrew Vardy

Outline

I Shell Scripts: Part 1
I Hello World
I Shebang!
I Example Project
I Introducing Variables
I Variable Names
I Variable Facts
I Arguments
I Exit Status
I Branching: if
I test - A Condition For if

Shell Scripts: Part 1

We’ll now start to consider shell scripts which are described in the
textbook starting with chapter 24.

A shell script is a series of commands placed in a file. The shell
executes the commands in order, just as if they had been entered on
the command line.

Shell scripts are used to automate various tasks and are heavily used
in system adminstration.

Lets start with our first script. . .

Hello World
--
#!/bin/bash
This is our first script.
echo 'Hello World!'
--

If you try and execute this script you will first get a “command not
found” error:

$ hello_world.sh
-bash: hello_world.sh: command not found

Why? Because the script’s location is probably not in the PATH.
One solution is to specify the path:

$./hello_world.sh
-bash: ./hello_world.sh: Permission denied

But we know how to fix this problem, right? The user needs execute
permission:

$ chmod u+x hello_world.sh

Now it works!

$./hello_world.sh
Hello World!

You can execute it without the ./ by adding . to the end of your
path. But many suggest this is unsafe:
http://unix.stackexchange.com/questions/65700/
is-it-safe-to-add-to-my-path-how-come.

http://unix.stackexchange.com/questions/65700/is-it-safe-to-add-to-my-path-how-come
http://unix.stackexchange.com/questions/65700/is-it-safe-to-add-to-my-path-how-come

Shebang!

Lets see our script again:

--
#!/bin/bash
This is our first script.
echo 'Hello World!'
--

Only the first line should be unfamiliar. The #! character sequence
is known as a shebang. The rest of the line specifies the name of
the interpreter to use to execute the script—bash in this case.

The fact that the shebang starts with # is important as this is the
comment character. So bash itself will ignore the line.

This works also for other interpreted languages such as python:

--
#!/usr/bin/python
print 'Hello World!'
--

Now this script can be executed as follows:

$./hello_world.py
Hello World!

Without the shebang, the python interpreter would have to be
called:

$ python hello_world.py
Hello World!

Example Project
We will follow along with an example that begins in chapter 25 of
the textbook. The task is to write a script that produces a report in
HTML format. We will start by creating a script that produces the
following minimal HTML page:

<HTML>
<HEAD>

<TITLE>Page Title</TITLE>
</HEAD>
<BODY>

Page body.
</BODY>

</HTML>

It would be easy enough to place this in a file directly, but we will
use the following script to achieve this instead. We will then add
features to the script to create the page dynamically. . .

--
#!/bin/bash
Program to output a system information page
echo "<HTML>"
echo " <HEAD>"
echo " <TITLE>Page Title</TITLE>"
echo " </HEAD>"
echo " <BODY>"
echo " Page body."
echo " </BODY>"
echo "</HTML>"
--

We have to make this script executable. When we execute it all of
the text is echoed to standard output. To create an html file, use
redirection:

$ report1.sh > /tmp/report1.html

Open by directing your browser to this URL:
file:///tmp/report1.html.

We always want to avoid repetition in code. We notice that all of
the echo commands in the previous script could be combined into
one:

--
#!/bin/bash
Program to output a system information page
echo "<HTML>

<HEAD>
<TITLE>Page Title</TITLE>

</HEAD>
<BODY>

Page body.
</BODY>

</HTML>"
--

The shell will keep reading a quoted string until it encounters the
closing quotation mark. So the newline characters are preserved in
the output.

Introducing Variables
Now we want to give the report a better title. We will use the title
in a couple of places, so it makes sense to use a variable for the title.
Why? In case we need to change the title, we only need to change
one line.

--
#!/bin/bash
Program to output report with custom title
TITLE="System Report"
echo "<HTML>

<HEAD>
<TITLE>$TITLE</TITLE>

</HEAD>
<BODY>

<H1>$TITLE</H1>
</BODY>

</HTML>"
--

All of the shell expansions we have seen can be used when defining
or using variables. e.g.

a=z
b="a string"
c="a string and $b"
d=$(ls -l foo.txt)
e=$((5 * 7))
f="\t\ta string\n"

In the following script we add some further data to the report:

--
#!/bin/bash
Program to output report with custom title w/ date
TITLE="System Report for $(date +%F)"
echo "<HTML>

<HEAD>
<TITLE>$TITLE</TITLE>

</HEAD>
<BODY>

<H1>$TITLE</H1>
<P>Compiled by $USER</P>

</BODY>
</HTML>"
--

Variable Names

Shell variables must being with a letter or underscore. The
remaining characters can be letters, digits, or underscores. So the
following are valid names:

I _var1
I A2
I Tomato_33

The following are not valid:
I 1var
I BIG CHEESE
I x-coordinate

Variable Facts

Constants
It is a convention, that names in ALL-CAPS are treated as
constants, but this is not enforced.
If you want to force a variable to be treated as read-only, use the
declare builtin with -r:

declare -r TITLE="Page TItle"

Type
By default, all variables are strings. These strings can be converted
into integers for processing (covered later).

Undefined Variables
An undefined variable expands to the empty string. No warnings are
issued for using an undefined variable! This can cause problems:

$ foo=foo.txt
$ foo1=foo1.txt
$ cp $foo $fool # An 'l' was typed instead of '1'
cp: missing destination file operand after `foo.txt'

Seperating Variables From Other Text
Often we want to concatenate strings. But if you add text to the
end of a variable, then you will be referring to a new (probably
undefined) variable. For example, lets say you want to rename a file
with a ‘1’ suffix.

$ file="foo"
$ mv $file $file1
mv: missing destination file operand after ‘foo’

Instead, use curly braces to delimit the variable name:

$ mv $file ${file}1

Arguments

A shell script can access command-line arguments. They are
accessed through the following special variables:

$1 First argument
$2 Second argument
.
$9 Ninth argument

Subsequent arguments are accessed as follows: ${10}, ${11}, . . .

Consider the following example scripts that require arguments.

--
#!/bin/bash
echo $1 $2 $3 $4
--

The next one just sums the arguments passed in.

--
#!/bin/bash
echo $(($1 + $2))
--

String arguments not convertible to integers are simply treated as
zeros. Floating-points generate an error.

Exit Status

All commands issue a value when they terminate called their exit
status. This applies to scripts, but also to individual commands like
ls. The exit status is a value from 0 to 255 which indicates the
following:

0 Success
1-255 Failure. The value may indicate a particular problem.

See “Exit Status” in command’s man page.

We can access the exit status of the last command executed via
the special variable $?.

e.g.

$ ls -d /usr/bin
/usr/bin
$ echo $?
0

$ ls -d /bin/usr
ls: cannot access /bin/usr: No such file or directory
$ echo $?
2

The shell provides two simple builtin commands called true and
false that just terminate with a 0 (true) or 1 (false).
Note that in digital logic 0 is true, while 1 is false. Not so for bash.

$ true
$ echo $?
0

$ false
$ echo $?
1

We can now really get started to talk about branching in shell
scripts. . .

Branching: if

The ability to test a condition and execute different branches of a
program is fundamental to all programming languages. Branching is
achieved through the if statement which has the following form:

if commands; then
commands

[elif commands; then
commands...]

[else
commands]

fi

Remember that the parts in [square brackets] are optional and that
... means that the whole section can be repeated (i.e. there can
be multiple elif blocks).

Lets look at an example:

x=5
if [$x -eq 5]; then

echo "yes"
else

echo "no"
fi

We can put this in a script and execute it (add the shebang) or put
it in the command-line:

$ x=5
$ if [$x -eq 5]; then echo "yes"; else echo "no"; fi

Note that each keyword (if, then, else, fi) must begin a line or
be preceded by ;.

Here again is the form of if

if commands; then
commands

[elif commands; then
commands...]

[else
commands]

fi

The if statement depends on a condition which is really just a
sequence of commands. The exit status of the last of those
commands is what determines what branch is taken.

Recall that the exit status of true and false were 0 (success) and
1 (failure), respectively.

$ if true; then echo "It's true."; fi
It's true.

$ if false; then echo "It's true."; fi
$

test - A Condition For if
The if statement tests the exit status of a set of commands, which
could be anything. However, the most common strategy is to use
the test command. On its own, test has two equivalent forms:

test expression

and

[expression]

expression evalutes to either true or false. The test command
returns an exit status of zero for a true expression, and a status of
one otherwise.

There are a wide variety of possible expressions based on files,
strings, and integers, with conditions that can be combined through
logical operators.

File Operators
The following are possible expressions based on file operators:

On the next slide is a script that provides an example of some file
operators. It contains tests such as the following:

[-f "$FILE"]

This one checks for the existence of a file. Notice that the variable
FILE is quoted. This is to prevent spaces or special characters
within this variable from invalidating the expression. If this is not a
concern, the variable can be left unquoted.

You will also see a new statement in this example:

exit 1

This terminates the script with an exit status of 1, indicating a type
of failure (remember that 0 is success).

FILE=~/.profile
if [-e "$FILE"]; then

if [-f "$FILE"]; then
echo "$FILE is a regular file."

fi
if [-d "$FILE"]; then

echo "$FILE is a directory."
fi
if [-r "$FILE"]; then

echo "$FILE is readable."
fi
if [-w "$FILE"]; then

echo "$FILE is writable."
fi

else
echo "$FILE does not exist"
exit 1

fi

String Operators
Operators on strings are summarized below:

The following script provides some examples of string operators:

ANSWER=$1
if [-z "$ANSWER"]; then

echo "There is no answer." 1>&2 # An error msg.
exit 1 # so redirect

fi # to stderr

if ["$ANSWER" == "yes"]; then
echo "The answer is YES."

elif ["$ANSWER" == "no"]; then
echo "The answer is NO."

elif ["$ANSWER" == "maybe"]; then
echo "The answer is MAYBE."

else
echo "The answer is UNKNOWN."

fi

Integer Operators

Integer operators are summarized below:

The following script provides some examples of integer operators. . .

INT=$1
if [-z "$INT"]; then

echo "INT is empty." >&2
exit 1

fi
if [$INT -eq 0]; then

echo "INT is zero."
else

if [$INT -lt 0]; then
echo "INT is negative."

else
echo "INT is positive."

fi
if [$((INT % 2)) -eq 0]; then

echo "INT is even."
else

echo "INT is odd."
fi

fi

Logical Operators

All of the types of expressions described above can be combined
using logical operators:

For example, to test whether FILE is both a regular file and is
readable, do the following test:

[-f $FILE -a -r $FILE]

To test if a file is not readable, do the following:

[! -r $FILE]

To test for the following logical condition:

Do the following:

[! \(-f $FILE -a -r $FILE \)]

Note that the parentheses have to be escaped. Without parentheses
the logical not would apply only to the first condition. Meanwhile,
the above condition could be written without parentheses if we
utilize De Morgan’s Law:

This applies a logical not to each term individually and changes the
operator from AND to OR:

[! -f $FILE -o ! -r $FILE]

