
COMP 2718: Regular Expressions

By: Dr. Andrew Vardy

Outline

I Introduction
I grep - Global Regular Expression Print
I Metacharacters and Literals
I Crossword Example
I Bracket Expressions
I POSIX Character Classes
I Basic Vs. Extended Regular Expressions
I Alternation
I Quantifiers
I Examples
I {} - Matches an Element a Specified Number of Times
I Regular Expressions in Shell Scripts
I grep1.sh - grep as a Shell Script
I BASH_REMATCH

Introduction

A regular expression is a symbolic notation for finding patterns in
text. They are useful in many ways:

I Searching for patterns
I Validating data (e.g. is a given phone number properly

formatted)
I Syntax highlighting

Most programming languages provide support regular expressions.

Regular expressions are similar to globbing, but also very different.
Some of the same characters are used, but their meaning differs. So
be aware if you are using globbing or regular expressions—they are
not the same.

grep - Global Regular Expression Print

One can work with regular expressions using many different tools
and programming languages. We will start by using grep for
illustration.

So far we have used grep only to search for fixed strings. e.g.

$ ls /usr/bin | grep zip

Actually, “zip” is being used here as a regular expression—just a
very straightforward one. Here is the form of the grep command:

grep [options] regex [file...]

Lets look at some of grep’s options, then dive into regex. . .

We’ll follow some examples from chapter 19 of the textboook. First,
we create some files do perform pattern matching on:

$ ls /bin > dirlist-bin.txt
$ ls /usr/bin > dirlist-usr-bin.txt
$ ls /sbin > dirlist-sbin.txt
$ ls /usr/sbin > dirlist-usr-sbin.txt
$ ls dirlist*.txt
dirlist-bin.txt dirlist-sbin.txt dirlist-usr-sbin.txt
dirlist-usr-bin.txt

In the following, note the behaviour of grep with. . .

no options matches + filenames
-l just filenames with matches
-L filenames without matches

$ grep bzip dirlist*.txt
dirlist-bin.txt:bzip2
dirlist-bin.txt:bzip2recover

$ grep -l bzip dirlist*.txt
dirlist-bin.txt

$ grep -L bzip dirlist*.txt
dirlist-sbin.txt
dirlist-usr-bin.txt
dirlist-usr-sbin.txt

Metacharacters and Literals
In the searches above we used the regular expression “bzip”. These
four characters are considered literal characters. The power of
regex’s comes by using the following metacharacters:

^ $. [] { } - ? * + () |

The meanings of these characters are totally different from their
usage in bash. Therefore, you need to enclose regular
expressions in quotes to prevent the shell from expanding
them.
The Any Character: .
A dot or period represents any single character. e.g.

$ grep -h '.zip' dirlist*.txt
bunzip2
bzip2
gunzip
[...more results follow... "zip" is not included]

The Anchors: ˆ (start of line) and $ (end of line)
ˆ means the start of the line and $ means the end of the line.

$ grep -h '^zip' dirlist*.txt zip
zipcloak
[...]
zipsplit

$ grep -h 'zip$' dirlist*.txt gunzip
gzip
unzip
[...]
zip

$ grep -h '^zip$' dirlist*.txt
zip

Crossword Example

Lets say you are solving a crossword and looking to answer the
following question:

What’s a five letter word whose third letter is ‘j’ with last
letter ‘r’?

The following provides some answers:

$ grep -i '^..j.r$' /usr/share/dict/words
Gujar
Kajar
Major
major

Bracket Expressions

A list of characters in square brackets means a single-character
match to one of those characters. For example:

$ grep -h '[bg]zip' dirlist*.txt

bzip2
bzip2recover
gzip

This matches any line containing “bzip” or “gzip”.

Except for caret (ˆ) and dash (-) other metacharacters lose their
special meaning in a bracket expression.

Negation
If ˆ is the first character in a bracket expression, it means logical
negation. The match must not include any of the subsequent
characters. e.g.

$ grep -h '[^bg]zip' dirlist*.txt
bunzip2
gunzip
[...none containing "bzip" or "gzip"...]

Traditional Character Ranges
A range of characters or digits can be specified within a bracket
expression in the form [x-y] where x is the first possible character
and y is the last possible character. e.g.

$ grep -h '^[A-Z]' dirlist*.txt

This matches filenames that start with capital letters.

Multiple ranges are also possible where the match must occur in one
of the ranges. e.g.

$ grep -h '^[A-Za-z0-9]' dirlist*.txt

This matches any filename starting with letters or numbers. (I say
‘filename’ because that’s what this command is dealing with, but in
general regular expressions are for string matching.)

If you actually want to match to a literal dash character you should
put it as the first entry in a bracket expression. e.g. The following
matches any filename with containing ‘-’, ‘A’, or ‘Z’.

$ grep -h '[-AZ]' dirlist*.txt

POSIX Character Classes

Sometimes the traditional character ranges (e.g. [A-Z]) don’t work.
Recent versions of bash seem to be okay, but some programs can
become broken because of confusion between different character
orderings. Traditionally, the characters were ordered in collation
order, the same ordering used in ASCII:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz

Yet this is different from the conventional dictionary order:

aAbBcCdDeEfFgGhHiIjJkKlLmMnNoOpPqQrRsStTuUvVwWxXyYzZ

To prevent confusion between these different orderings you can use
the POSIX Character classes. These are the same classes that can
be used in globbing. . .

The POSIX character classes provide protection against different
character orderings, but they don’t support partial ranges such as
[A-M].

What is POSIX?
The IEEE (Institute of Electrical and Electronics Engineers)
developed a standard for application programming interfaces (APIs),
shell, and utilities for Unix-like systems. The name for this standard
is Portable Operating System Interface (POSIX). POSIX-compliance
means that a feature is likely to work the same on different Unix-like
OS’s (e.g. Unix, Linux, Mac OS X).

See https://en.wikipedia.org/wiki/POSIX.

https://en.wikipedia.org/wiki/POSIX

Basic Vs. Extended Regular Expressions

The POSIX standard separates basic regular expressions (BRE)
from extended regular expressions (ERE). BRE just uses the
following metacharacters:

^ $. [] *

ERE adds the following (to be discussed below):

() { } ? + |

By default grep uses BRE. To use ERE with grep just specify the
-E option.

Alternation
ERE adds support for alternation which is the ability to choose one
of a set of matches. The matches are separated with the ‘|’ or pipe
character.

$ echo "AAA" | grep -E 'AAA|BBB'
AAA

$ echo "BBB" | grep -E 'AAA|BBB'
BBB

$ echo "CCC" | grep -E 'AAA|BBB'
$

Alternation can be applied on more than two choices:

$ echo "AAA" | grep -E 'AAA|BBB|CCC'
AAA

Alternates can be combined with other metacharacters and
sequences of matches.

Use parentheses characters ‘(’ and ‘)’ to separate the alternation:

$ grep -Eh '^(bz|gz|zip)' dirlist*.txt

This matches filenames that begin with “bz”, “gz”, or “zip”. What
would be matched if we left off the parentheses?

$ grep -Eh '^bz|gz|zip' dirlist*.txt

This matches any string that starts with “bz” and contains “gz” or
“zip”.

Quantifiers

There are four types of quantifiers that specify how many of the
preceding element are matched. An element could be a single
character or a group of characters (e.g. an alternation). Here are
the quantifiers:

? Match an element zero or one time (0, 1)
* Match an element zero or more times (0, infinity)
+ Match element one or more times (1, infinity)

{n,m} Match element n - m times (n, m). Other variations
possible—see below.

Examples
e.g. Phone Numbers
Assume the following two forms of phone numbers are considered
valid:

(nnn) nnn-nnnn

nnn nnn-nnnn

The following regex accepts both forms:

^\(?[0-9][0-9][0-9]\)?
[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$

(Line above broken in two.)
Note that the parentheses are escaped (with \). The parentheses
elements are followed with ? which means to match 0 or 1 times. In
other words, they are optional.

e.g. Sentences
Lets assume that a sentence begins with a capital letter, is followed
by any number of upper and lowercase letters and spaces, and ends
with a period. Obviously, this is pretty crude. The following is a
valid sentence by this criterion.

Sadsfnwe asdfnwe JasdfJ er.

Here is the regex to recognize such a sentence:

[[:upper:]][[:upper:][:lower:]]*\.

Note the use of * which means match any number of times (0,
infinity). The period at the end is escaped because . is a
metacharacter. The use of POSIX character classes make this look a
bit messy. Using traditional character ranges it would look like this:

[A-Z][A-Za-z]*\.

e.g. Words with single spaces between them
The following regex matches lines that consists of groups of
alphabetic characters (i.e. words) separated by single spaces.

^([[:alpha:]]+ ?)+$

Note that the parenthesis are used here to establish an element
(word and space) that must be repeated one or more times. +
means match 1 to infinity times. This quantifier is used twice for
the characters in the word to the (word and space) element. Note
that the following strings would not match:

a b 9
abc d

{} - Matches an Element a Specified Number of Times

Sometimes we want to specify the number of matches. The { }
quantifier achieves this and has the following options:

We can use this to improve (by shortening) our regex for phone
numbers:

^\(?[0-9][0-9][0-9]\)?
[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]$

To this:

^\(?[0-9]{3}\)? [0-9]{3}-[0-9]{4}$

Regular Expressions in Shell Scripts

Recall the compound command [[]] that can act as a
replacement for the test command and its single bracket [] form.
The [[]] compound command enables an additional operator for
extend regular expression matching:

[["$string" =~ regex]]

This is true (exit status 0) if the string variable matches the regex.
Somewhat surprisingly, the regex should not be quoted. If it is
quoted, it is treated as a regular string. Space characters should be
individually quoted or escaped. Consider the following examples:

$ if [['asdf' =~ ^[a-z]+$]]; then echo "Yes"; fi
Yes

Now try adding a space.

$ if [['asdf asdf' =~ ^[a-z]+$]]; then echo "Yes"; fi
$

No match, which makes sense. Lets modify our regex to include
spaces:

$ if [['asdf asdf' =~ ^[a-z]+$]]; then echo "Yes"; fi
-bash: syntax error in conditional expression

Syntax error(s) because the right-hand side now has two parts. Try
escaping the space character.

$ if [['asdf asdf' =~ ^[a-z\]+$]]; then echo "Yes"; fi
Yes

Another strategy is to put the regex into a variable which can be
quoted.

$ regex='^[a-z]+$'
$ if [['asdf asdf' =~ $regex]]; then echo "Yes"; fi
Yes

grep1.sh - grep as a Shell Script

The following script will implement a simplified version of grep as a
shell script. The first part of the script does the following:

I Prints a usage line and exits if there are 0 or more than 2
arguments.

I Accepts $1 as the regex pattern
I If there are 2 arguments, uses $2 as the file to search.

Otherwise uses standard input, located at /dev/fd/0.

The second part of the script is a loop that checks for a match on
each line of the file and increments a count variable for each match.

#!/bin/bash
if [$# -eq 0 -o $# -gt 2]; then

echo grep1.sh pattern "[file]"
exit 1

fi
pattern=$1
source=/dev/fd/0 # Use stdin
if [$# -eq 2]; then

source=$2 # Use file $2
fi # instead of stdin

count=1
while read line; do

if [["$line" =~ ${pattern}]]; then
echo "$count: $line"

fi
((count = count + 1))

done < $source
exit 0

BASH_REMATCH
bash also provides a feature to access individual parts of a regular
expression match. This is through the BASH_REMATCH variable.
Actually, this is an array variable. ${BASH_REMATCH[0]} will hold
the entire matched string (if it exists).

In order for BASH_REMATCH to be useful you have to define capture
groups within the regex. These are defined with (). For example
this regex defines three capture groups:

([a-z])([a-z])([a-z])

After the regular expression matching with the =~ operator, the
matched elements (in this case, single characters) will be available
through the following:

${BASH_REMATCH[1]}
${BASH_REMATCH[2]}
${BASH_REMATCH[3]}

The following example illustrates BASH_REMATCH:

$ [["asdf" =~ ([a-z])([a-z])([a-z])]]
$ echo ${BASH_REMATCH[1]}
a

$ [["asdf" =~ ([a-z])([a-z])([a-z])]]
$ echo ${BASH_REMATCH[2]}
s

$ [["asdf" =~ ([a-z])([a-z])([a-z])]]
$ echo ${BASH_REMATCH[3]}
d

$ [["asdf" =~ ([a-z])([a-z])([a-z])]]
$ echo ${BASH_REMATCH[0]}
asd

