COMP 2718: Processes

By: Dr. Andrew Vardy

Adapted from the notes of Dr. Rod Byrne

Outline

VvV VY VvV VvV VvV VvV VvVVvYY

Processes — Chapter 10 of TLCL
What is a Process

How a Process Starts

ps - View Processes

top - View Processes Dynamically
Foreground and Background

Job Control

Stopping a Process

Signals

kill Doesn’t Always Mean Kill!

Processes — Chapter 10 of TLCL

We're going to cover processes from chapter 10 of the textbook.
Along the way, we'll introduce the following commands:

vV VvV VvV VY VvV VvYYyYy

ps — Report a snapshot of current processes
top — Display tasks

jobs — List active jobs

bg — Place a job in the background

fg — Place a job in the foreground

kill — Send a signal to a process

killall — Kill processes by name

What is a Process

A process is a running instance of a particular program. It is a
useful word because the same program (e.g. cat) can have many
different running instances. That is, many processes.

Modern OS's give the appearance of running many processes
simultaneously even when limited to a single-core CPU. This is done
by rapidly switching between process, so that all processes appear
active to the user. This is known as multitasking.

How a Process Starts

One process is always launched from another process. The first is
the parent process while the second is the child process. In Unix
and Unix-like systems, a process is launched when a process forks.
A fork is a system call (a request to the OS kernel) which creates a
copy of the calling process. Another system call caled exec which
replaces the code and memory of the parent process with those of
the child process.

Why this strange strategy?

Interprocess communication: The child process will get a copy of
the parent’s file descriptors and therefore get input from the
parent (e.g. through a pipe). Also, the parent will get an exit
status from the child when it terminates.

f

Stack

Heap
Data
Qode: /usr/bin/bas

ork():
parent

=

Stack

Heap

Data

™~

Gode: /usr/bin/bas

-

Very high-level diagram of
what happens when you
run the command ”1s” in

a Linux shell:

exec():

child

Stack

Data

Code: /usr/bin/ls

On Linux, there is a program called init which the kernel launches.

» init launches a bunch of init scripts in etc
» Some are daemon programs which run various services

All processes have a process ID or PID. For init the PID is 0. All
other processes get incrementally increasing PIDs.

ps - View Processes

ps [options]

Without arguments, ps shows the processes associated with the
current terminal (referred to as TTY—which comes form teletype).
$ ps

PID TTY TIME CMD

2304 pts/0 00:00:00 bash

2390 pts/0 00:00:00 ps

TIME means the CPU time consumed

ps is typically used with BSD syntax which does not use can use a
leading dash for options. The most common form:

ps aux

a, u, and x mean:

a List processes belonging to every user
u Display in user-oriented format
x List processes without a terminal (tty)

[Run examples]

What do these new columns mean ?

Header
USER

%CPU
%MEM
vsZ
RSS

START

Meaning

User ID. This is the owner of the process.
CPU usage in percent.

Memory usage in percent.

Virtual memory size.

Resident Set Size. The amount of physical memory (RAM) the
process is using in kilobytes.

Time when the process started. For values over 24 hours, a date is
used.

What does the STAT column mean?

State Meaning
Running. This means that the process is running or ready to run.

Sleeping. The process is not running; rather, it is waiting for an
event, such as a keystroke or network packet.

D Uninterruptible Sleep. Process is waiting for I/0 such as a disk
drive.
T Stopped. Process has been instructed to stop. More on this later.

A defunct or “zombie” process. This is a child process that has
terminated, but has not been cleaned up by its parent.

< A high priority process. It's possible to grant more importance to a
process, giving it more time on the CPU. This property of a process
is called niceness. A process with high priority is said to be less nice
because it's taking more of the CPU's time, which leaves less for
everybody else.

N Alow priority process. A process with low priority (a “nice”
process) will only get processor time after other processes with
higher priority have been serviced.

top - View Processes Dynamically

ps is a fundamental command, but presents only a snapshot. By
contrast top presents a continuous update (every 3 seconds) and
highlights the top processes:

top

top displays some of the same info from ps aux but also other
things including:

» Load average (upper right): Number of processes waiting to
run (in a runnable state) averaged over 60 seconds, 5 minutes,
and 15 minutes.

» “%Cpu(s)” (third line): Percentage CPU activity for user (us),
system (sy), nice (ni), and idle (id) processes.

We will do some experiments using the sysbench tool for
benchmarking CPU performance. This is probably not installed on
your system. Under Linux install as follows:

sudo apt-get install sysbench

We will run the following to perform an extended CPU test:

$ sysbench --test=cpu --cpu-max-prime=10000000 run
Since this is hard to type, lets make an alias to it:

$ alias prime_test='sysbench --test=cpu \
> --cpu-max-prime=1000000 run'

Finally, lets run this in the background by ending the command
with & (we will cover background processes shortly):

$ prime_test &

We can now run this several times to see the load on the system in
top, which should be running in another terminal.

Foreground and Background

When the shell executes a program, that program is normally said to
be running in the foreground. That is, we have to wait for it to
exit before returning to the shell to do more work. Meanwhile, the
foreground process has control of the terminal and can use the
display in various ways (e.g. vi, ninvaders).

Since the OS supports multitasking, we can run multiple programs
simultaneously. To run a program but immediately return control to
the shell, we run the process in the background. This is done by
suffixing the program with &.

$ gedit &

Any command can be run in the background, but a fast-running
program like 1s or cat would just return immediately anyway.

Try running in the foreground:
$ gedit

You can interrupt a process with “control-c”. This will send a
signal to the process, asking it to quit (it may not respond). Note
that the “control-c” must be entered at the terminal, so you may
have to switch your window manager's focus back to the terminal
from gedit.

Job Control

The jobs command gives a listing of the jobs (i.e. processes)
launched from the shell. e.g.

$ prime_test &

$ gedit &

$ jobs

[1]1- Running sysbench --test=cpu ...
[2]+ Running gedit &

You can refer to the above job numbers and bring a job to the
foreground as follows:

$ fg %2 # Brings gedit to foreground

gedit can now be terminated with “control-C".

Stopping a Process

A process in the foreground can be stopped (which really means
“paused”) with “control-z". For example, start vi then pause it with
“control-z" to return to the shell.

$ vi
[In vi hit "control z"]
$ jobs

Now try running gedit and hitting “control-z" (at the terminal).
Note how gedit has become unresponsive when the window size is
adjusted. Thus. ..

A background process is disconnected from the terminal but
is still running. A stopped process is not actively running.

We have introduced the following commands above:

Command Description

jobs [args] Display status of jobs
fg [jobspec|] Places the job in the foreground
bg [jobspec] Places the job in the background

Notes:

» These commands refer to “jobs” not “processes”. A job may be
a single process or a group of processes (e.g. a pipeline).

» A jobspec is a ‘%’ followed by the corresponding job number
(from running jobs).

Signals

Processes can send each other signals. We have seen two already:

“control-c” Sends a signal called INT (Interrupt) which generally
means—please terminate.

“control-z" Sends a signal called TSTP (Terminal Stop) which
means—please stop.

Note that termination is different from stopping. A stopped process
can be resumed. Also, both of the above signals can be ignored by
the process.

There are many other types of signals. Here are some of the most
common. ..

Number

Name
HUP

Hangup. This is a vestige of the good old days

when terminals were attached to remote
computers with phone lines and modems. The
signal is used to indicate to programs that the
controlling terminal has “hung up.” The effect of
this signal can be demonstrated by closing a
terminal session. The foreground program
running on the terminal will be sent the signal and
will terminate.

15

18

19

INT

KILL

TERM

CONT

STOP

Interrupt. Performs the same function as the
Ctrl-c key sent from the terminal. It will
usually terminate a program.

Kill. This signal is special. Whereas programs
may choose to handle signals sent to them in
different ways, including ignoring them all
together, the KILL signal is never actually sent to
the target program. Rather, the kernel
immediately terminates the process. When a
process is terminated in this manner, it is given no
opportunity to “clean up” after itself or save its
work. For this reason, the KILL signal should
only be used as a last resort when other
termination signals fail.

Terminate. This is the default signal sent by the
kill command. If a program is still “alive”
enough to receive signals, it will terminate.

Continue. This will restore a process after a STOP
signal.

Stop. This signal causes a process to pause
without terminating. Like the KILL signal, it is
not sent to the target process, and thus it cannot be
ignored.

Number
3
11

20

28

Name
QUIT
SEGV

TSTP

WINCH

Meaning
Quit.
Segmentation Violation. This signal is sent if a

program makes illegal use of memory, that is, it
tried to write somewhere it was not allowed to.

Terminal Stop. This is the signal sent by the
terminal when the Ctrl- z key is pressed. Unlike
the STOP signal, the TSTP signal is received by

the program but the program may choose to
ignore it.

Window Change. This is a signal sent by the
system when a window changes size. Some
programs , like top and less will respond to
this signal by redrawing themselves to fit the new
window dimensions.

kill Doesn't Always Mean Kill!

The command to send a signal is kill.

kill [-signal] PID

PID refers to the process ID of the recipient. This command is
probably called “kill" because the default signal is TERM
(Terminate). But a program can still ignore TERM (e.g. if broken).
So if all else fails, try ki1l -9.

Note that only the owner of the process (or the superuser) can kill a
process.

You can also kill all process belonging to a particular user or having
a particular name with killall.

killall [-u user] [-signal] name...

