
COMP 2718: Permissions: Part 2

By: Dr. Andrew Vardy

Adapted from the notes of Dr. Rod Byrne



Outline

I Permissions: Part 2
I umask - Set Default Permissions
I Special Permissions
I Changing Identities
I su - Run a New Shell as Another User
I sudo - Execute a Command as Another User
I chown - Change File Owner and Group



Permissions: Part 2

Here we will continue to look at file permissions and cover the
following commands:

I umask – Set the default file permissions
I su – Run a shell as another user
I sudo – Execute a command as another user
I chown – Change a file’s owner



umask - Set Default Permissions

The umask is a number that alters the default permissions for a new
file. It uses the concept of a “bit mask”. Each bit that is set (value
1) is meant to prevent a new file from having that permission. For
example, here are two common values:

umask (octal) umask (binary) Meaning

0002 000 000 000 010 Not writable by others
0022 000 000 010 010 Not writable by group or others

umask is a command that shows the current umask value (if no
argument is specified). If called with a single argument, that
argument is then interpreted as the new umask value for the shell.



Note that umask acts like a filter, turning off certain permissions.
So it has to be understood in relation to the default
permissions—usually 666 meaning rw-rw-rw-. Consider the
application of the umask 0002:

. . . and umask 0022:

umask can also accept a symbolic notation similar to chmod but
most of the time you will see the octal form.



Special Permissions

Notice that the octal numbers used by chmod and umask are usually
expressed as 4 digits whereas only 3 seem necessary. This is because
the first digit is used to control the following special permissions:

setuid (octal 4000) Sets the effective user ID to the program’s
owner rather than the real user. Used to give a
program “superpowers” to act with the priviledges of
another user (usually, the superuser).

setgid (octal 2000) Like the setuid bit, but sets the effective group
ID to that of the file owner.

sticky bit (octal 1000) When set on directories restricts access so
that only the file’s owner or root can rename or
delete files. Often used for /tmp.



You are unlikely to need this, but here is how you can set these
special permissions using chmod:

$ chmod u+s program # setuid
$ chmod g+s dir # setgid
$ chmod +t dir # sticky bit

More important is to recognize special permissions. Here are some
example file modes:

-rwsr-xr-x A file with setuid
drwxrwsr-x A directory that has the setgid attribute:
drwxrwxrwt A directory with the sticky bit set

For real examples, take a look at passwd, su, sudo, and \tmp



Changing Identities

The super user refers to a special account for system administration.
The super user’s uid is 0 and the username is usually root.

To perform system adminsitration tasks a regular user may be able
to assume the identity of the super user. It might also be necessary
to assume the identity of another user. The two programs used for
these tasks are su and sudo. . .



su - Run a New Shell as Another User

su [-[l]] [user]

The -l means to use the environment (more on this later) of the
target user. Strangely, for su, -l can be abbreviated as -. If no user
is specified, it is assumed that root is intended.

Using su has some disadvantages over sudo. In particular, there is
the temptation to run all commands as root, which degrades
security. Because of this the root account is locked by default on
the following OS’s:

I Ubuntu Linux
I Mac OS X
I Probably others. . . ?

su remains useful for system administrators but has largely been
supplanted by sudo (at least for typical users).



sudo - Execute a Command as Another User

sudo provides a more constrained ability to execute commands as
the superuser. Use of sudo does not require knowing the root
user’s password (which su does require). Instead, sudo asks the
user to enter his or her own password.

sudo command

The command is then run with superuser privileges. On Linux the
file /etc/sudoers is used to administer sudo privileges. The
commands that can be run with sudo can also be restricted.

Fortunately, you don’t need to type your password constantly. After
entering your password you can execute subsequent sudo
commands without password for 15 minutes.



chown - Change File Owner and Group

chown can change the owner and group owner of a file or directory.
Superuser privileges are required (i.e. use sudo to run it).

chown [owner][:[group]] file...

Here are some example arguments to illustrate usage:


