
COMP 2718: Permissions: Part 1

By: Dr. Andrew Vardy

Adapted from the notes of Dr. Rod Byrne



Outline

I Permissions
I Owners, Group Members, and Everyone Else
I Read, Writing, and Executing
I Digression: Number Systems
I chmod - Change File Mode



Permissions

Unix-like OS’s have always been multi-user systems. At the time of
Unix’s development computers were large and had to be shared by
many users. Therefore, Unix has many features to protect the
system from careless or malicious users, and to protect users from
each other!

We’re going to cover permissions which is one of Unix’s
fundamental security mechanisms, described in chapter 9 of the
textbook. Along the way, we’ll introduce the following commands:

I id – Display user identity
I chmod – Change a file’s mode

The following commands will be covered in Part 2.
I umask, su, sudo, chown, chgrp, and passwd



Owners, Group Members, and Everyone Else

All files and directories are owned by some user. The owner has
control over permissions, that is the access rights for that file (or
directory). Users can belong to groups that may also have
permission to access the file. The owner can also set the
permissions for everybody else (a.k.a. ‘the world’).

Who are you?
A user is identified by their user ID (uid) which is mapped to a
username. Each user also has a primary group ID (gid) and may
also belong to other groups. Execute id to see this information. e.g.

$ id
uid=1001(av) gid=1001(av) groups=1001(av),4(adm),
27(sudo),108(lpadmin),124(sambashare),999(vboxsf)



Details
Detailed information on user’s and passwords are stored in the
following files:

/etc/passwd User accounts
/etc/group Groups
/etc/shadow Passwords

This may differ on some systems. For example, on Mac OS X real
human user accounts do not appear in /etc/passwd.



Read, Writing, and Executing
We have already seen in “The File System: Part 2” that a file’s
permissions can be viewed with ls -l. e.g.

$ ls -l filename.txt
-rw-rw-r-- 1 av av 5 Feb 7 13:34 filename.txt

The first 10 characters are the file attributes, with the first
character having the following possible meanings:



The remaining 9 characters are called the file mode and represent
permissions for the owner, the file’s group owner, and the world:



Some example file mode strings. . .



Digression: Number Systems

In our introduction to the chmod there are references to octal
numbers. In case you don’t know, lets briefly review some
important number systems:

System Base Symbols Used by Whom

Binary 2 0, 1 Computers
Decimal 10 0, 1, . . . 9 Humans
Octal 8 0, 1, . . . 7 Programmers
Hexadecimal 16 0, 1, . . . 9, A, B, . . . F Programmers

(Computers use all systems when doing input/output.)
Binary makes sense for computers since the basic means of
information representation is electrical (charged or not charged).

Why does anyone use octal and hexadecimal?



Octal and hexadecimal make sense for viewing binary. A binary
representation of the colour red using 8-bits for each of the red,
green, and blue channels would look like this:

11111111 00000000 00000000

In octal, each numeral represents 3 bits (23 = 8). So the above
number is 77600000.

In hexadecimal, each numeral represents 4 bits (24 = 16). So the
above number is FF0000.

With either octal or hexadecimal there is an easy mapping to/from
binary, which is why programmers use these number systems



chmod - Change File Mode
chmod is used to change a file’s mode. chmod can take arguments
in two forms octal and symbolic notation.

This is an example of the octal form of chmod:

$ ls -l fresh.txt
-rw-r--r-- 1 av staff 94 5 Feb 09:46 fresh.txt
$ chmod 620 fresh.txt
$ ls -l fresh.txt
-rw--w---- 1 av staff 94 5 Feb 09:46 fresh.txt



Not all 8 possibilities are common. In fact, 2 (-w-) is pretty
uncommon. Here the ones you will more likely see and use:

7 (rwx), 6 (rw-), 5 (r-x), 4 (r--), and 0 (---)

The symbolic notation has three parts: who the change will affect,
the operation to perform, and what permission to set. To define
who is affected use some combination of ‘u’, ‘g’, ‘o’, and ‘a’:

If no character is specified, “all” is assumed.



Next, a “+”, “-”, or “=” specifies the operation to perform:

Character Operation

+ Permission to be added
- Permission to be taken away
= Specified permissions applied; Others taken away

The final character gives the permission to set: “r”, “w”, or “x”.



Some examples of symbolic notation strings:


