
COMP 2718: The OS, Shell, Terminal, and Text

By: Dr. Andrew Vardy

Adapted from the notes of Dr. Rod Byrne



Outline

I What is an Operating System?
I The Shell and Terminal
I How are Characters Encoded?
I Standard Input, Standard Output, and Standard Error
I Escape Sequences

I Example Programs



What is an Operating System?

The operating system (OS) on your computer manages the
system’s resources (processor, memory, files, . . . ) and provides
interfaces to the user and to user programs.

The following are the most common OSs:
I Linux
I Mac OS X
I Android
I Windows
I iOS

The top three have a common heritage as they are all variants of
the Unix operating system and inherit the Unix command line (not
obvious in Android).



The Shell
Modern OSs are layered to provide consistent interfaces between
layers and ultimately to the computer’s hardware.

Figure 1: The Linux OS: penguintutor.com

This is for the Linux OS. The shell is a special application designed
to let users interact with the OS in the same way that applications
do. The shell provides the CLI.



The Shell and Terminal
Modern shells are based on the Unix shell. There are a number of
different shells available, but we will focus on the most popular for
Linux and Mac OS X: bash (Bourne Again SHell)

A terminal emulator (often just terminal) provides a graphical
interface to interact with the shell. We refer to them as terminal
emulators because the original terminals were just keyboard/display
devices connected to a remote computer. . .

Figure 2: The DEC VT100 terminal: wikipedia.com



Text In, Text Out

A terminal displays a grid of characters. There are two streams of
characters, one coming out for display, and one coming in from the
keyboard.

The standard terminal size is 24 rows by 80 columns. Terminals can
be re-sized arbitrarily, but it is sometimes nice to limit line length to
80 characters to respect this standard.

The cursor is a highlighted place in the terminal’s grid, marking
where the next typed character will be placed.



How are Characters Encoded?

There are many ways to map characters from the broad array of
human languages into binary numbers. The following are among the
most common:

I ASCII – 7 bit code – 128 characters
I ISO-8859-1 – 8 bit code for Western European languages
I Unicode – characters for most human languages
I UTF-8 – 8 bit encoding of Unicode

ASCII is a relatively simple scheme that remains useful to
understand for computing. It includes the 26 latin letters in both
cases, punctuation, as well as a set of control characters that are
not intended to be printed but control how text is processed. For
example, code 8 represents a backspace.



Figure 3: wikipedia.com



Standard Input, Standard Output, and Standard Error
Individual programs interact with the shell and each other through
streams of characters called stdin, stdout, and stderr which have
the following defaults:

I standard input (stdin) is the input that comes from the
keyboard

I standard output (stdout) is the program’s output displayed by
the terminal

I standard error (stderr) are the program’s error/debug
messages displayed by the terminal

Figure 4: wikipedia.com



Writing to stdout in Java

The following Java program writes the characters hi! to stdout:

public class H {
public static void main(String [] args) {

java.lang.System.out.println("hi!");
}

}

Compile by executing the command line javac H.java. Execute
with java H.



Writing to both stdout and stderr in Java
This program is the same as the previous except that it also outputs
to standard error.
public class H2 {

public static void main(String [] args) {
java.lang.System.err.println("START");
java.lang.System.out.println("hi!");
java.lang.System.err.println("END");

}
}

Upon running this you will see no real difference between stdout and
stderr. However, we can use redirection (introduced later on) to
redirect stderr to a file, so that the program’s output is separated
from debugging/error messages.

java H2 2> H2.txt

>2 means redirect standard error (stream 2) to the following file.
(More on this later).



Reading from stdin and writing to stdout in Python

The following Python program reads lines of characters from stdin
and prints them in uppercase to stdout:

import sys
while True:

l = sys.stdin.readline()
if len(l) == 0: break
print l.upper()

There is no need to compile as Python is an interpreted language
(more later on what is meant by ‘compile’ and ‘interpreted’).
Execute with python upper.py. By default, the input comes from
the keyboard so you will need to type to see results. Terminate with
‘control-D’ (End-Of-File in ASCII).



Escape sequences
An escape sequence is a sequence of characters that together
represent a non-standard character or action. Some escape
sequences just move the cursor:

I \t moves the cursor horizontally by one ‘tab’
I \n moves to the next line
I \r moves back to the start of the row
I \b erases the last character

Notice how the \ character allows the meaning of the next character
to “escape” out of its normal interpretation. If you want a literal
backslash then use \\.

There are many other escape sequences. My favourite is \a which
causes the terminal to emit a beep!

echo -e "Oops\a"



Writing to stdout in C using escape sequences

#include <stdio.h>
int main() {

/* Draw 80 '*' chars. */
for (int i=0; i<80; i++)

printf("*");
printf("\n");

/* Draw '*' chars at each tab position. */
for (int i=0; i<9; i++)

printf("\t*");
printf("\n");
return 0;

}



We can even do some primitive animation by incorporating sleep
instructions within the code:

#include <stdio.h>
#include <unistd.h>
int main() {

/* Without this line the terminal would wait
for a newline before printing anything. */

setbuf(stdout, NULL);

/* Draw 80 '*' chars, pausing after each one. */
for (int i=0; i<80; i++) {

printf("*");
usleep(20000);

}
printf("\n");
return 0;

}



On the next couple of slides there are a couple of variations that
make use of the following escape sequences:

I \r (return to the beginning of the line)
I \b (backspace)

These next two programs will run indefinitely. Terminate them with
‘control-c’ from the terminal.



progress_bar2: Draw 80 asterisks, erase them all, then start again.

#include <stdio.h>
#include <unistd.h>
int main() {

setbuf(stdout, NULL); /* Needed as before. */
while (1 == 1) {

for (int i=0; i<80; i++) {
printf("*");
usleep(20000);

}
/* Back to start, erase, then back to start. */
printf("\r");
for (int i=0; i<80; i++)

printf(" ");
printf("\r");

}
return 0; /* We'll never actually get here. */

}



progress_bar3: Draw 80 asterisks, erase one-by-one, then start
again.
#include <stdio.h>
#include <unistd.h>
int main() {

setbuf(stdout, NULL); /* Needed as before. */
while (1 == 1) {

for (int i=0; i<80; i++) {
printf("*");
usleep(20000);

}
/* Backspace to the beginning of the line. */
for (int i=0; i<80; i++) {

printf("\b \b");
usleep(20000);

}
}
return 0; /* We'll never actually get here. */

}


