
Introduction to Version Control with Git

Andreas Skielboe1

Adapted by Dr. Andrew Vardy2

1. Dark Cosmology Centre
Niels Bohr Institute

2. Department of Computer Science
Memorial University

January 20, 2016

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

License

All images adapted from Pro Git by Scott Chacon and released
under license Creative Commons BY-NC-SA 3.0.

See http://progit.org/

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Why Use Version Control?

A Version Control System (VCS) is an integrated fool-proof
framework for

Backup and Restore

Short and long-term undo

Tracking changes

Synchronization

Collaborating

Sandboxing

... with minimal overhead.

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Local Version Control Systems

Conventional version control systems provides some of these
features by making a local database with all changes made to files.

Any file can be recreated by getting changes from the database
and patch them up.

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System



Centralized Version Control Systems

To enable synchronization and collaborative features the database
is stored on a central VCS server, where everyone works in the
same database.

Introduces problems: single point of failure, inability to work
offline.

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Distributed Version Control Systems

To overcome problems related to centralization, distributed VCSs
(DVCSs) were invented. Keeping a complete copy of database in
every working directory.

Actually the most simple and most powerful implementation of
any VCS.

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Git Basics

Git Basics

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Git Basics - The Git Workflow

The simplest use of Git:

Modify files in your working directory.

Stage the files, adding snapshots of them to your staging
area.

Commit, takes files in the staging area and stores that
snapshot permanently to your Git directory.

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System



Git Basics - The Three States

The three basic states of files in your Git repository:

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Git Basics - Commits

Each commit in the git directory holds a snapshot of the files that
were staged and thus went into that commit, along with author
information.

Each and every commit can always be looked at and retrieved.

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Git Basics - File Status Lifecycle

Files in your working directory can be in four different states in
relation to the current commit.

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Git Basics - Working with remotes

A remote in Git is nothing more than a link to another git directory.

The easiest commands to get started working with a remote are

clone: Cloning a remote will make a complete local copy.

pull: Getting changes from a remote.

push: Sending changes to a remote.

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System



Git Basics - Advantages

Basic advantages of using Git:

Nearly every operation is local.

Committed snapshots are always kept.

Strong support for non-linear development.

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Hands-on

Hands-on with Git
(here be examples)

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Hands-on - First-Time Git Setup

Before using Git for the first time:

Pick your identity

$ git config --global user.name "John Doe"

$ git config --global user.email johndoe@example.com

Check your settings

$ git config --list

Get help

$ git help <verb>

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Hands-on - Getting started with a bare remote server

Using a Git server (ie. no working directory / bare repository) is
the analogue to a regular centralized VCS in Git.

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System



Hands-on - Getting started with remote server

When the remote server is set up with an initialized Git directory
you can simply clone the repository:

Cloning a remote repository

$ git clone <repository>

You will then get a complete local copy of that repository, which
you can edit.

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Hands-on - Getting started with remote server

With your local working copy you can make any changes to the
files in your working directory as you like. When satisfied with your
changes you add any modified or new files to the staging area
using add:

Adding files to the staging area

$ git add <filepattern>

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Hands-on - Getting started with remote server

Finally to commit the files in the staging area you run commit
supplying a commit message.

Committing staging area to the repository

$ git commit -m <msg>

Note that so far everything is happening locally in your working
directory.

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Hands-on - Getting started with remote server

To share your commits with the remote you invoke the push
command:

Pushing local commits to the remote

$ git push

To recieve changes that other people have pushed to the remote
server you can use the pull command:

Pulling remote commits to the local working directory

$ git pull

And thats it.

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System



Hands-on - Summary

Summary of a minimal Git workflow:

clone remote repository

add you changes to the staging area

commit those changes to the git directory

push your changes to the remote repository

pull remote changes to your local working directory

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

More advanced topics

Git is a powerful and flexible DVCS. Some very useful, but a bit
more advanced features include:

Branching

Merging

Tagging

Rebasing

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

Checkout these slides

The LATEX-source of these slides is freely available on GitHub.

GitHub

$ git clone git://github.com/askielboe/into-to-git-slides.git

Have fun using Git!

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System

References

Some good Git sources for information:

Git Community Book - http://book.git-scm.com/

Pro Git - http://progit.org/

Git Reference - http://gitref.org/

GitHub - http://github.com/

Git from the bottom up - http:
//ftp.newartisans.com/pub/git.from.bottom.up.pdf

Understanding Git Conceptually -
http://www.eecs.harvard.edu/~cduan/technical/git/

Git Immersion - http://gitimmersion.com/

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System



Applications

GUIs for Git:

GitX (MacOS) - http://gitx.frim.nl/

Giggle (Linux) - http://live.gnome.org/giggle

Andreas Skielboe1 Adapted by Dr. Andrew Vardy2 Git - Version Control System


