
3/28/16

1

1

COMP 2718:
Software Development

Tools:
gcc and make

Slides	 adapted	 by	Andrew	 Vardy	 (Memorial	 University)
Originally	 created	 by	Marty	 Stepp,	 Jessica	 Miller,	 and	 Ruth	Anderson	(University	 of 	Washington)

http://www.cs.washington.edu/390a/

2

Outline
• We	will	 look	at	the	 following	software	 development	 tools:

§ The	gcc	compiler
§ The	make	build	tool	(usually	used	for	C/C++)
§ (later) The	ant	built	tool	(usually	used	for	Java)

• Along	 the	way	we’ll	 introduce	some	additional	 concepts:
§ Compiling	and	linking
§ Object	files

• We	will	not	focus	on	the	actual	programming	 language	 concepts,	
but	on	the	 tools	themselves.	 	So	don’t	worry	 if	you	don’t	know	or	
remember	 either	 Java	or	C/C++.

3

C and Java
• We	will	discuss	tools	for	software	development,	 mostly	with	 respect	
to	C	and	 Java

• C	is	one	of	the	most	well-used	 programming	 languages
§ C++	is	the	object-oriented	successor	to	C
§ Yet	C	continues	to	be	used,	particularly	for	embedded	systems
§ C/C++	are	compiled	languages.		The	compiler	generates	a	machine	
language	executable	program.

• Java	 is	also	extremely	 popular	and	shares	many	of	its	object-
oriented	 features	with	C++
§ Java	programs	are	compiled	to	Java	bytecode (not	machine	language)
§ Java	bytecode runs	on	a	Java	Virtual	Machine	(JVM)	which	can	be	
implemented	on	a	wide	array	of	platforms	according	to	the	Java	
slogan:	"Write	once,	run	anywhere"

4

3/28/16

2

5

Compiling: Java
• What	happens	when	 you	compile a	Java	program?

$ javac Example.java Example.class

Answer:	It	produces	a	.class	file.
§ Example.java is	compiled	to	create	Example.class

• How	do	you	 run this	Java	program?
$ java Example

produces

6

Compiling: C

• To	compile a	C	program	 called	source.c,	 type:
gcc -o target source.c target

(where	target is	the	name	of	the	executable	program	to	build)

§ the	compiler	builds	an	actual	executable	file (not	a	.class like	Java)
§ Example:	 gcc -o hi hello.c

Compiles	the	file		hello.c into	an	executable	called	“hi”

• To	 run your	program,	 just	execute	 that	 file:
§ Example: ./hi

command description
gcc GNU	C	compiler

produces

7

Multiple Files
• single-file	 programs	do	not	work	well	 when	code	gets	large

§ compilation	can	be	slow
§ hard	to	collaborate	between	multiple	programmers
§ more	cumbersome	to	edit

• larger	 programs	 are	split	into	multiple	 files
§ each	file	represents	a	partial	program	or	module
§ modules	can	be	compiled	separately	or	together
§ a	module	can	be	shared	between	multiple	programs

8

Object files (.o)
• A	.c	 file	can	also	be	compiled into	an	object	(.o)	file with	-c :

$ gcc -c part1.c part1.o
$ ls
part1.c part1.o part2.c

§ a	.o file	is	a	binary	“blob” of	compiled	C	code	that	cannot	be	directly	
executed,	but	can	be	directly	“inserted” into	an	executable	later

• You	can	compile a	mixture	 of	.c and	.o files:

$ gcc -o combined part1.o part2.c combined

Avoids	recompilation	of	unchanged	partial	program	files	(e.g.	part1.o)

produces

produces

3/28/16

3

9

Header files (.h)
• header :	A	C	file	whose	only	purpose	is	to	be	#included	 (#include	 is	
like	 java	 import	 statement)
§ generally	a	filename	with	the	.h extension
§ holds	shared	variables,	types,	and	function	declarations
§ similar	to	a	java	interface:	contains	function	declarations but	not	
implementations

• key	 ideas:
§ every	name.c intended	to	be	a	module	(not	a	stand	alone	program)	
has	a	name.h

§ name.h declares	all	global	functions/data	of	the	module
§ other	.c files	that	want	to	use the	module	will	#include	name.h

10

Compiling large programs
• Compiling	multi-file programs	 repeatedly	 is	cumbersome:

$ gcc -o myprogram file1.c file2.c file3.c

• Retyping	commands	 like	 this	is	wasteful:
§ often	the	required	compile	command	is	much	longer	for	larger	
projects

§ even	if	one	file	is	changed	(e.g.	file3.c)	all	files	need	to	be	
recompiled;		again	this	becomes	really	time	consuming	for	larger	
projects

• We’ll	 look	at	 this	through	the	 following	Running	Example...

11

--- hello.c

/* Classic "hello world" program, split into three .c files. */

#include "file2.h"
#include "file3.h"
#include <stdio.h>

int main(void) {
 print_hello();
 printf(" ");
 print_world();
 printf("\n");
}

--- file2.h

/* Print "hello". */
void print_hello(void);

--- file2.c

#include "file2.h"
#include <stdio.h>

void print_hello(void) {
 printf("hello");
}

--- file3.h

/* Print "world". */
void print_world(void);

--- file3.c

#include "file3.h"
#include <stdio.h>

void print_world(void) {
 printf("world");
}

Running Example

12

Running Example
• We	have	 three	 modules:	hello,	 file2,	file3
• Two	of	the	modules	have	both	.h	and	 .c	files:	 file2,	 file3

§ These	are	intended	to	be	used	externally
• The	 third	module	 is	the	main	program:	 hello

§ No	.h	file	because	this	module	is	the	main	one,	it	pulls	in	file2	and	file3	
with	include statements

• Simplest	 solution	to	compile	 is	the	following	one-liner:
§ gcc -o hello hello.c file2.c file3.c

• Using	this	one-liner	 we	would	have	 to	re-compile	 if	any	 file	changes
• No	intelligence	 built	into	this	process;	easy	 for	mistakes	 to	be	made	
(e.g.	 file2.h	is	changed,	 but	we	 forget	 to	re-compile)

3/28/16

4

13

Running Example
• The	 following	solution	is	a	bit	better:

§ gcc -c hello.c
•Generates	hello.o

§ gcc -c file2.c
•Generates	file2.o

§ gcc -c file3.c
•Generates	file3.o

§ gcc -o hello hello.o file2.o file3.o
•Generates	hello	executable

• Yes,	 this	was	more	work	 to	type,	but	the	 .o	files	can	be	separately	
re-compiled	 if	necessary

• Still	 it	would	be	good	to	encode	all	of	this	in	a	script	or	 something;	 	
Even	better	 if	files	could	be	made	 to	compile	only	when	necessary

14

make
• make :	A	utility	 for	automatically	 compiling	 ("building")	executables	
and	libraries	 from	source	code.
§ a	basic	compilation	manager
§ often	used	for	C	programs,	but	not	language-specific
§ primitive,	but	still	widely	used	due	to	familiarity,	simplicity
§ similar	programs:	ant,	maven,	IDEs	(Eclipse),	...

• Makefile	 :	A	script	file	 that	defines	 rules	 for	what	must	be	compiled	
and	how	to	compile	 it.
§ Makefiles	describe	which	files	depend	on	which	others,	and	how	to	
create	/	compile	/	build	/	update	each	file	in	the	system	as	needed.

15

Dependencies
• dependency	:	When	a	 file	 relies	on	the	contents	of	another.

§ can	be	displayed	as	a	dependency	graph
§ to	build	main.o,	we	need	data.h,	main.c,	and	io.h
§ if	any	of	those	files	is	updated,	we	must	rebuild	main.o
§ if	main.o is	updated,	we	must	update	project1

16

make Exercise
• figlet :	program	for	displaying	 large	 ASCII	 text	 (like	banner).

§ http://freecode.com/projects/figlet

• Download	a	piece	 of	software	and	compile	 it	with	make:
§ download	.tar.gz file
§ un-tar it
§ look	at	README file	to	see	how	to	compile	it

§ (sometimes)			run	./configure
• for	cross-platform	programs;		sets	up	make for	our	operating	system

§ run	make to	compile	the	program
§ (optional)	run	sudo make install to	install	on	your	system
§ execute	the	program

3/28/16

5

17

Makefile rule syntax
target : source1 source2 ... sourceN

command
command
...

§ source1 through	sourceN are	the	dependencies for	building	
target

§ Make	will	execute	the commands in	order

Example:

myprogram : file1.c file2.c file3.c
gcc -o myprogram file1.c file2.c file3.c

this	is	a	tab	THIS	IS	NOT	spaces!!
§ The	command line	must	be	indented	by	a	single	tab

•not	by	spaces;			NOT	BY	SPACES! SPACES	WILL	NOT	WORK!
18

Running make
$ make target
§ uses	the	file	named	Makefile in	current	directory
§ Finds	a	rule in	Makefile	for	building	target and	follows	it

• if	the	target file	does	not	exist,	or	if	it	is	older	than	any	of	its	sources,	
its	commands	will	be	executed

• variations:

$ make
§ builds	the	first target	in	the	Makefile

$ make -f makefilename
$ make -f makefilename target
§ uses	a	makefile	other	than	Makefile

19

Making a Makefile

courtesy XKCD
20

Making a Makefile
• Here	 is	a	very	 simple	makefile	 for	our	running	example:

• Its	nice	and	short	but	notice	 that	 it	is	really	 just	the	same	as	our	first	
gcc	“one-liner”,	 only	wrapped	 in	the	syntax	of	a	makefile	 although	 it	
does	have	 some	advantages:
§ Documents	build	instructions
§ Will	re-build	hello	if	any	of	the	.c	files	change	(if	make	is	called)

• The	disadvantage	 is	that	a	change	 requires	 compilation	of	all	files.

hello: hello.c file2.c file3.c
gcc -o hello hello.c file2.c file3.c

3/28/16

6

21

Separate Targets
• Lets	add	multiple	 targets	 to	our	Makefile to	build	the	 .o	files	
individually,	 then	build	the	executable:

• This	is	better	 because	changing	one	 file	will	not	require	 complete	 re-
compilation

hello: hello.o file2.o file3.o
gcc -o hello hello.o file2.o file3.o

hello.o: hello.c
gcc -c hello.c

file2.o: file2.c
gcc -c file2.c

file3.o: file3.c
gcc -c file3.c

22

Rules with no dependencies

clean:
rm file1.o file2.o file3.o myprog

• make	 assumes	that	a	 rule's	command(s)	will	build/create	 its	target
§ but	if	your	rule	does	not	actually	create	its	target,	the	target	will	still	
not	exist	the	next	time,	so	the	rule	will	always execute	its	commands	
(e.g.	clean above)

§ make clean is	a	convention	for	removing	all	compiled	files

23

Rules with no commands
all: myprog myprog2

myprog: file1.o file2.o file3.o
gcc -o myprog file1.o file2.o file3.o

myprog2: file4.c
gcc -o myprog2 file4.c

...

• all rule	has	no	commands,	but	depends	on	myprog and	myprog2
§ typing	make all will	ensure	that	myprog,	myprog2are	up	to	date
§ all rule	often	put	first,	so	that	typing	makewill	build	everything

24

Variables
NAME = value (declare)
$(NAME) (use)

Example	Makefile:

OBJFILES = file1.o file2.o file3.o
PROGRAM = myprog

$(PROGRAM): $(OBJFILES)
gcc -o $(PROGRAM) $(OBJFILES)

clean:
rm $(OBJFILES) $(PROGRAM)

• variables	 make	 it	easier	 to	change	 one	option	throughout	 the	file
§ also	makes	the	makefile	more	reusable	for	another	project

Note that Makefile syntax is similar to
bash syntax but also differs (e.g. spaces
allowed in variable assignment)

3/28/16

7

25

Adding Features to Example
OBJECTS = hello.o file2.o file3.o
PROG = hello

all: $(PROG)

hello: $(OBJECTS)
gcc -o $(PROG) $(OBJECTS)

hello.o: hello.c
gcc -c hello.c

file2.o: file2.c
gcc -c file2.c

file3.o: file3.c
gcc -c file3.c

clean:
rm -f $(OBJECTS) $(PROG)

Disadvantages of
this version:
• Much longer!

(we will fix this)

Advantages:
• Variables allow

customization
• The clean target

allows us to
start from a
clean slate

26

More variables
Example	Makefile:

OBJFILES = file1.o file2.o file3.o
PROGRAM = myprog
CC = gcc
CCFLAGS = -g -Wall

$(PROGRAM): $(OBJFILES)
$(CC) $(CCFLAGS) -o $(PROGRAM) $(OBJFILES)

• many	makefiles	 create	 variables	 for	the	compiler,	 flags,	etc.
§ this	can	be	overkill,	but	you	will	see	it	"out	there"

27

Special variables
$@ the	current	target	file
$^ all	sources	listed	for	the	current	target
$< the	first	(left-most)	source	for	the	current	target

(there	are	other	special	variables*)
Example	Makefile:
myprog: file1.o file2.o file3.o

gcc $(CCFLAGS) -o $@ $^

file1.o: file1.c file1.h file2.h
gcc $(CCFLAGS) -c $<

*http://www.gnu.org/software/make/m anual /html _node/Autom atic-Var iabl es .html #Automati c-Vari abl es

28

Auto-conversions
• Rather	 than	specifying	 individually	how	to	convert	every	 .c file	 into	
its	corresponding	.o file,	you	can	set	up	an	implicit	 target:

conversion from .c to .o Makefile comments!
.c.o:

gcc $(CCFLAGS) -c $<

§ "To	create	filename.o	from	filename.c,	run	gcc	-g	-Wall	-c	filename.c"

• For	making	an	executable	 (no	extension),	 simply	write	 .c :
.c:

gcc $(CCFLAGS) -o $@ $<

3/28/16

8

29

Final Version of Example

OBJECTS = hello.o file2.o file3.o
PROG = hello

all: $(PROG)

$(PROG): $(OBJECTS)
gcc -o $(PROG) $(OBJECTS)

.c.o:
gcc -c $<

clean:
rm -f $(OBJECTS) $(PROG)

Nice features of
this final version:
• More compact

than previous
• Can be easily

customized for
similar projects
just by
modifying
variables

