
COMP 2718: The File System: Part 3

By: Dr. Andrew Vardy

Adapted from the notes of Dr. Rod Byrne



Outline

I File System Navigation — Chapter 4 of TLCL
I Globbing (a.k.a. Wildcards)
I Examples
I Hard and symbolic Links
I File Manipulation Commands
I General File Manipulation Examples



File System Navigation — Chapter 4 of TLCL

We’ll now cover material from chapter 4 of the textbook. The
following commands will be introduced:

I mkdir: Create directories
I cp: Copy files and directories
I mv: Move/rename files and directories
I rm: Remove files and directories
I ln: Create hard and symbolic links
I touch: Change file access time / creates file

The functionality of these commands are also well-captured in
graphical file managers that are suitable for easy tasks. But the
command line excels for more complex tasks.



Globbing (a.k.a. Wildcards)
Globbing is the use of special characters to select filenames based
on patterns.

Character classes



Examples
Assume the following current directory contents:

ab abc de.txt h1.class h3.class

$ ls a*

ab abc

$ ls *[ct] # ends in c or t

abc de.txt

$ ls *c*

abc h1.class h3.class

Note that * is interpreted as any number of characters, including
zero.

$ ls ??

ab



$ ls *.class

h1.class h3.class

$ rm d*

$ ls

ab abc h1.class h3.class

$ rm *s

$ ls

ab abc



Examples with character classes

Assume the following current directory contents:

012 10.txt ABC xyz

$ ls [[:upper:]]* # Any file beginning with upper-case

ABC

$ ls [![:digit:]]* # Any file NOT beginning with a digit

ABC xyz

$ ls *[[:digit:]t] # Any file ending in a digit or 't'

012 10.txt



Hard and symbolic Links

See slides entitled “Hard & Symbolic Links”



File Manipulation Commands
We review below the major file manipulation commands and show
common options:

mkdir - Create Directories

mkdir dir1...

Where ... indicates that the argument could be repeated, for
example:

mkdir dir1 dir2 dir3

The only common option I know about is -p which creates the
necessary parent directories. For example:

mkdir -p /tmp/A/B/C

Assuming /tmp exists but not A, B, or C, this creates the directories
A, B, and C.



cp - Copy Files and Directories

cp item1 item2

Copies the file/directory item1 to file/directory item2.

cp item... directory

Copies multiple items (files or directories) into the directory.



Common options for cp



Examples of using cp



mv - Move and Rename Files

mv item1 item2

Moves file/directory item1 to item2.

mv item... directory

Moves multiple items to the given directory.



Common options for mv



Examples of using mv



rm - Remove Files and Directories

rm item...

Removes item (or items) whether they are files or directories.

Common options for rm



Examples of using rm



BE CAREFUL WITH rm!
Unless you implement it yourself, there is no undelete command on
the command-line. Be especially careful when using rm and
globbing. The following is intended to delete all of the html files in
the current directory:

rm *.html

But what if you type the following by accident:

rm * .html

Firstly, rm will delete all of the files in the current directory
(Ahh!). Then it will complain there is no file called .html.
But the damage can be much worse. . .



. . . if you incorporate -r for recursive deletion. Lets say you have
directories A.1, A.2, A.3 that you want to completely delete. You
could type the following:

rm -r A.*

But if you typed the following you would wipe out everything in
your current directory (very bad if cur. dir. is your home—even
worse if its /).

rm -r A. *

A good solution is to first use ls in place of rm to give a listing of
the files that will be deleted:

ls -r A. *

[Huge listing of files appears and the mistake is realized.]

rm -r A.*



touch - Change File Access Time / Creates File
Sets both the modification and access times of files. By default it
will set both to the current time.

$ ls -l test1.txt

-rw-rw---- 1 av staff 15 21 Jan 11:58 test1.txt

[2 minutes later]

$ touch test1.txt
$ ls -l test1.txt

-rw-rw---- 1 av staff 15 21 Jan 12:00 test1.txt

touch will also create an empty file if the given arguments are
non-existent files. We will use this in some examples below. . .



General File Manipulation Examples
Lets use mkdir and touch to create a set of directories and files:

$ mkdir -p A/AA/AAA B/BB
$ ls -R # Lists all contents recursively

A B

./A:
AA

./A/AA:
AAA

./A/AA/AAA:

./B:
BB

./B/BB:



Alternatively, the program tree -C can be used to display the same
information in a tree-like format:

Remember this was generated with:

$ mkdir -p A/AA/AAA B/BB



Lets add some files with touch:

$ touch A/a A/AA/aa A/AA/AAA/aaa B/b B/BB/bb



Copy recursively from A/AA/AAA to the current directory. This
shows why the symbol . is needed!

$ cp -r A/AA/AAA .



Lets undo what we just did.

$ rm -r AAA



Remove all two-character dir’s and files contained in any subdir of
the current dir:

$ rm -r */??



Bad example of creating a symbolic link
Recreate original structure again, then create a symbolic link from
to aa in BB:

$ rm -r *
$ mkdir -p A/AA/AAA B/BB
$ touch A/a A/AA/aa A/AA/AAA/aaa B/b B/BB/bb

$ ln -s A/AA/aa B/BB/link



[Repeated from last slide]

$ ln -s A/AA/aa B/BB/link

Note that the relative pathname A/AA/aa is actually stored in the
link. This link is broken from the start! Why? Because it assumes
that B/BB should contain A/AA/aa which is not the case.



Good example of creating a symbolic link
Remove previous link, then change to the B/BB directory and create
the link there with an appropriate relative path:

$ rm B/BB/link
$ cd B/BB
$ ln -s ../../A/AA/aa link
$ cd ../..

The link is now valid (see change in colour).



Lets make sure that aa actually contains something:

$ echo "STUFF" > A/AA/aa # Redirection (covered soon)

$ cat A/AA/aa # Displays file (covered soon)

STUFF

$ cat B/BB/link

STUFF



If we alter the directory structure it can break the link.

$ mv B/BB .

$ cat BB/link
[nothing prints]


