
COMP 2718: The Environment

By: Dr. Andrew Vardy

Adapted from the notes of Dr. Rod Byrne

Outline

I The Environment — Chapter 11 of TLCL
I What is the Environment?
I Examining the Environment
I Some Interesting Variables
I How is the Environment Established?
I Setting Environment Variables
I Setting the PATH
I export – Export Environment Variables

The Environment — Chapter 11 of TLCL

We’re going to cover the environment from chapter 11 of the
textbook. Along the way, we’ll introduce the following commands:

I printenv – Print part or all of the environment
I set – Set shell options
I export – Export environment to subsequently executed

programs
I alias – Create an alias for a command

What is the Environment?

The environment is a set of variables that capture the state of the
shell. Shell variables are created by bash. Environment
variables are not created by the shell itself, but by the user or other
parts of the system.

The environment also stores aliases (which we have seen) and shell
functions (which we will see).

Examining the Environment
The printenv program displays all environment variables (but not
shell variables). There are many, so it is usually best to pipe to a
pager such as less:

$ printenv | less

The set shell builtin displays both shell and environment variables.
It also displays shell functions. Once again, it may be best to pipe
to less:

$ set | less

Meanwhile, you can always examine individual variables. e.g.:

$ echo $HOME

Some Interesting Variables

How is the Environment Established?

bash reads a series of configuration files when it starts. Note that
bash reads different files depending on if it is launched as a login or
non-login shell session:

Login shell A shell where we are prompted for a username and
password (e.g. logging in to a non-graphical system,
or connecting to a server via ssh).

Non-login shell Any other situation where the user is already logged
in (e.g. the shell associated with a terminal)

Configuration Files Read for Login Shells

Configuration Files Read for Non-Login Shells

Actually, .bashrc will often be read even for login shells, because
these typically call ~/.bashrc as well.

The book advises that to make changes to your PATH or define new
environment varibles, use .profile, but to use .bashrc for
everything else. However, this may not be convenient because you
may want to keep your customization together.

If you are the administrator of your system, you could customize the
files in /etc but this is not generally recommended.

Setting Environment Variables
You can set an environment variable as follows:

$ MY_VAR="WHATEVER"

bash is picky about spaces when it comes to variables (and aliases).
So you cannot have any spaces before or after the =.

Note that the command above only modifies the environment for
the current shell. To make this change more permanant, you can
add it to .bashrc. We can do this with an editor such as vi or
with the following:

$ echo MY_VAR=WHATEVER >> ~/.bashrc

(It would be preferable to do this with an editor to keep .bashrc
nicely structured. Also, you might want to follow the book’s advice
and put this in ~/.profile.)

Setting the PATH

PATH is an important environment variable that is often customized.
The shell searches the colon-separated directories listed in PATH
whenever you type a command. Only commands found within the
path (or shell built-ins, functions, and aliases) can be executed.
Here is an example of modifying the path:

PATH=$PATH:$HOME/bin

This adds :$HOME/bin (e.g. :/home/av/bin) to the end of the
current PATH variable. Note that directories in the path are searched
in order. You could also add to the beginning of the path which is
one way to effectively replace one command with another. e.g.

PATH=$HOME/bin:$PATH

Note: The shell can execute programs even with an empty PATH
but the full pathname of the program needs to be specified. . .
For example,

$ PATH=""

$ ls
bash: ls: No such file or directory

$ /bin/ls
[Contents of current directory shown]

export – Export Environment Variables

By default, setting an environment variable only affects the current
shell. Sometimes we want child processes of the shell to access
those variables. To make a variable accessible to child processes use
export:

export VAR_NAME

or

export VAR_NAME=VALUE

The first form is for an already defined variable, while the second
combines variable definition and export.

e.g. This Python script prints MY_VAR if it is defined. Otherwise, it
prints MY_VAR is not defined.
--
import os
if 'MY_VAR' in os.environ:

print os.environ['MY_VAR']
else:

print 'MY_VAR is not defined'
--

$ python print_my_var.py
MY_VAR is not defined

$ MY_VAR=2718
$ python print_my_var.py
MY_VAR is not defined

$ export MY_VAR
$ python print_my_var.py
2718

