
COMP 2718: Command Line Parsing

By: Dr. Andrew Vardy

Adapted from the notes of Dr. Rod Byrne



Outline

I Command Line Parsing
I Desired Whitespace
I Multiline Commands
I Whitespace in Filenames



Command Line Parsing

The material presented here is not provided in the textbook.

The shell parses strings of text passed in to yield a set of tokens.
Any whitespace counts as a delimiter between tokens:

Whitespace Space or tab characters (adjacent whitespace
characters are considered one)

Delimiter Separating symbols in a string
Token The separate items between delimiters

On the command line, the first token is usually the command itself,
while the rest are options or arguments. e.g.

$ echo hi there # Two arguments

$ echo hi there # Still two arguments



Desired Whitespace

So whitespace is effectively ignored when your command is parsed
by bash. If you really want whitespace to be included, you must
quote your arguments. A quoted argument is treated as one:

$ echo "hi there" # One argument

hi there

Remember that tabs are whitespace too:

$ echo -e "ARG1" "\tARG2\t" ARG3 ARG4

ARG1 ARG2 ARG3 ARG4



Multiline Commands
A newline character (‘\n’) marks the end of a line. If we want to
use a command string spread over several lines we use a ‘\’
character at the end of each line when the command is to be
continued on the next line. e.g.

$ echo hi \
> there \
> 2718!
hi there 2718!

If you don’t have a space before the ‘\n’ then the two intervening
tokens will be combined as one:

$ echo howdy\
> folks
hodyfolks



Whitespace in Filenames

Spaces in filenames are allowed, but they can cause trouble. The
following is legal:

$ echo "a message" > "the file"

$ cat the file

cat: the: No such file or directory
cat: file: No such file or directory

‘\’ should be used to escape the normal whitespace behaviour:

$ cat the\ file
a message


