COMP 2718: Command Line Parsing

By: Dr. Andrew Vardy

Adapted from the notes of Dr. Rod Byrne



Outline

Command Line Parsing
Desired Whitespace
Multiline Commands
Whitespace in Filenames

vV vyYVyYyy



Command Line Parsing

The material presented here is not provided in the textbook.
The shell parses strings of text passed in to yield a set of tokens.
Any whitespace counts as a delimiter between tokens:

Whitespace Space or tab characters (adjacent whitespace
characters are considered one)
Delimiter Separating symbols in a string
Token The separate items between delimiters

On the command line, the first token is usually the command itself,
while the rest are options or arguments. e.g.

$ echo hi there # Two arguments

$ echo hi there # Still two arguments



Desired Whitespace

So whitespace is effectively ignored when your command is parsed
by bash. If you really want whitespace to be included, you must
quote your arguments. A quoted argument is treated as one:

$ echo "hi there" # One argument

hi there

Remember that tabs are whitespace too:

$ echo -e "ARG1" "\tARG2\t" ARG3 ARG4

ARG1 ARG2 ARG3 ARG4



Multiline Commands

A newline character (‘\n') marks the end of a line. If we want to
use a command string spread over several lines we use a '\’
character at the end of each line when the command is to be
continued on the next line. e.g.

$ echo hi \
> there \
> 2718!

hi there 2718!

If you don't have a space before the ‘\n’ then the two intervening
tokens will be combined as one:

$ echo howdy\
> folks
hodyfolks



Whitespace in Filenames

Spaces in filenames are allowed, but they can cause trouble. The
following is legal:

$ echo "a message" > "the file"
$ cat the file

cat: the: No such file or directory
cat: file: No such file or directory

‘\" should be used to escape the normal whitespace behaviour:

$ cat the\ file
a message



