Unit 2: Modeling in the Frequency Domain
Part 5: Modeling Translational Mechanical Systems

Engineering 5821:
Control Systems I

Faculty of Engineering & Applied Science
Memorial University of Newfoundland

January 20, 2010
Translational Mechanical Systems

- Example: Via DE
- Example: Problem Stated in the Freq. Domain
- Linearly Independent Motions
We will model mechanical systems using three components:
We will model mechanical systems using three components:

- **Spring**: A spring applies a force against compression/expansion
- **Mass**: A moving mass has inertia and resists changes in velocity
- **Viscous Damper**: Resists motion (pure energy loss)
TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships for springs, viscous dampers, and mass

<table>
<thead>
<tr>
<th>Component</th>
<th>Force-velocity</th>
<th>Force-displacement</th>
<th>Impedance (Z_M(s) = F(s)/X(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>(f(t) = K \int_0^t v(\tau) d\tau)</td>
<td>(f(t) = Kx(t))</td>
<td>(K)</td>
</tr>
<tr>
<td>Viscous damper</td>
<td>(f(t) = f_v v(t))</td>
<td>(f(t) = f_v \frac{dx(t)}{dt})</td>
<td>(f_v s)</td>
</tr>
<tr>
<td>Mass</td>
<td>(f(t) = M \frac{dv(t)}{dt})</td>
<td>(f(t) = M \frac{d^2x(t)}{dt^2})</td>
<td>(Ms^2)</td>
</tr>
</tbody>
</table>

Note: The following set of symbols and units is used throughout this book: \(f(t) = \text{N (newtons)} \), \(x(t) = \text{m (meters)} \), \(v(t) = \text{m/s (meters/second)} \), \(K = \text{N/m (newtons/meter)} \), \(f_v = \text{N-s/m (newton-seconds/meter)} \), \(M = \text{kg (kilograms = newton-seconds}^2/\text{meter}) \).
Analogies with electrical quantities: Force is analogous to voltage, velocity to current, and displacement to charge.

<table>
<thead>
<tr>
<th>Component</th>
<th>Force-velocity</th>
<th>Force-displacement</th>
<th>Impedence $Z_M(s) = F(s)/X(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>$f(t) = K \int_0^t v(\tau)d\tau$</td>
<td>$f(t) = Kx(t)$</td>
<td>K</td>
</tr>
<tr>
<td>Mass</td>
<td>$f(t) = M \frac{dv(t)}{dt}$</td>
<td>$f(t) = M \frac{d^2x(t)}{dt^2}$</td>
<td>Ms^2</td>
</tr>
<tr>
<td>Viscous damper</td>
<td>$f(t) = f_v v(t)$</td>
<td>$f(t) = f_v \frac{dx(t)}{dt}$</td>
<td>$f_v s$</td>
</tr>
</tbody>
</table>

Note: The following set of symbols and units is used throughout this book: $f(t) = \text{N (newtons)}$, $x(t) = \text{m (meters)}$, $v(t) = \text{m/s (meters/second)}$, $K = \text{N/m (newtons/meter)}$, $f_v = \text{N-s/m (newton-seconds/meter)}$, $M = \text{kg (kilograms = newton-seconds}^2/\text{meter})$.
Analogies with electrical quantities: Force is analogous to voltage, velocity to current, and displacement to charge. Analogies with electrical components: Spring \equiv Capacitor, Mass \equiv Inductor, Viscous Damper \equiv Resistor

TABLE 2.4 Force-velocity, force-displacement, and impedance translational relationships for springs, viscous dampers, and mass

Component	Force-velocity	Force-displacement	Impedance
Spring	$f(t) = K \int_0^t v(\tau)d\tau$	$f(t) = Kx(t)$	K
Viscous damper	$f(t) = f_v v(t)$	$f(t) = f_v \frac{dx(t)}{dt}$	$f_v s$
Mass	$f(t) = M \frac{dv(t)}{dt}$	$f(t) = M \frac{d^2x(t)}{dt^2}$	$M s^2$

Note: The following set of symbols and units is used throughout this book: $f(t) = N$ (newtons), $x(t) = m$ (meters), $v(t) = m/s$ (meters/second), $K = N/m$ (newtons/meter), $f_v = N-s/m$ (newton-seconds/meter), $M = kg$ (kilograms = newton-seconds2/meter).
Find the transfer function $X(s)/F(s)$ for the following system,
Find the transfer function $X(s)/F(s)$ for the following system,

Assume the mass is travelling to the right, pulled by the force $f(t)$.
Example: Via DE

Find the transfer function $X(s)/F(s)$ for the following system,

Assume the mass is travelling to the right, pulled by the force $f(t)$. All other forces oppose this motion.
Find the transfer function $X(s)/F(s)$ for the following system,

Assume the mass is travelling to the right, pulled by the force $f(t)$. All other forces oppose this motion. Draw the free body diagram:
Example: Via DE

Find the transfer function $X(s)/F(s)$ for the following system,

Assume the mass is travelling to the right, pulled by the force $f(t)$. All other forces oppose this motion. Draw the free body diagram:
Find the transfer function \(X(s)/F(s) \) for the following system,

Assume the mass is travelling to the right, pulled by the force \(f(t) \). All other forces oppose this motion. Draw the free body diagram:

The sum of opposing forces must equal the sum of applied forces,
Example: Via DE

Find the transfer function \(X(s)/F(s) \) for the following system,

Assume the mass is travelling to the right, pulled by the force \(f(t) \). All other forces oppose this motion. Draw the free body diagram:

The sum of opposing forces must equal the sum of applied forces,

\[
M \frac{d^2 x(t)}{dt^2} + f_v \frac{dx(t)}{dt} + Kx(t) = f(t)
\]
Find the transfer function $X(s)/F(s)$ for the following system,

Assume the mass is travelling to the right, pulled by the force $f(t)$. All other forces oppose this motion. Draw the free body diagram:

The sum of opposing forces must equal the sum of applied forces,

$$M \frac{d^2x(t)}{dt^2} + f_v \frac{dx(t)}{dt} + Kx(t) = f(t)$$
Translational Mechanical Systems

Example: Via DE
Example: Problem Stated in the Freq. Domain
Linearly Independent Motions

\[M \frac{d^2x(t)}{dt^2} + f_v \frac{dx(t)}{dt} + Kx(t) = f(t) \]
We can apply the Laplace transform, assuming zero initial conditions:

$$M \frac{d^2x(t)}{dt^2} + f_v \frac{dx(t)}{dt} + Kx(t) = f(t)$$
$M \frac{d^2x(t)}{dt^2} + f_v \frac{dx(t)}{dt} + Kx(t) = f(t)$

We can apply the Laplace transform, assuming zero initial conditions:

$Ms^2X(s) + f_v sX(s) + KX(s) = F(s)$
Translational Mechanical Systems

Example: Via DE
Example: Problem Stated in the Freq. Domain
Linearly Independent Motions

\[M \frac{d^2x(t)}{dt^2} + f_v \frac{dx(t)}{dt} + Kx(t) = f(t) \]

We can apply the Laplace transform, assuming zero initial conditions:

\[Ms^2X(s) + f_v sX(s) + KX(s) = F(s) \]

Solving for the transfer function \(X(s)/F(s) \),
We can apply the Laplace transform, assuming zero initial conditions:

\[Ms^2 X(s) + f_v sX(s) + KX(s) = F(s) \]

Solving for the transfer function \(X(s)/F(s) \),

\[(Ms^2 + f_v s + K)X(s) = F(s) \]
We can apply the Laplace transform, assuming zero initial conditions:

\[M \frac{d^2 x(t)}{dt^2} + f_v \frac{dx(t)}{dt} + K x(t) = f(t) \]

We can apply the Laplace transform, assuming zero initial conditions:

\[Ms^2 X(s) + f_v s X(s) + K X(s) = F(s) \]

Solving for the transfer function \(X(s)/F(s) \),

\[
\frac{X(s)}{F(s)} = \frac{1}{Ms^2 + f_v s + K}
\]
\[M \frac{d^2 x(t)}{dt^2} + f_v \frac{dx(t)}{dt} + Kx(t) = f(t) \]

We can apply the Laplace transform, assuming zero initial conditions:

\[Ms^2 X(s) + f_vsX(s) + KX(s) = F(s) \]

Solving for the transfer function \(X(s)/F(s) \),

\[(Ms^2 + f_vs + K)X(s) = F(s) \]

\[\frac{X(s)}{F(s)} = \frac{1}{Ms^2 + f_vs + K} \]

Just as for electrical networks, we can state the original problem in the frequency domain, as opposed to this two-step process.
We can apply the Laplace transform, assuming zero initial conditions:

\[Ms^2 X(s) + f_v s X(s) + K X(s) = F(s) \]

Solving for the transfer function \(X(s)/F(s) \),

\[(Ms^2 + f_v s + K) X(s) = F(s) \]

\[\frac{X(s)}{F(s)} = \frac{1}{Ms^2 + f_v s + K} \]

Just as for electrical networks, we can state the original problem in the frequency domain, as opposed to this two-step process. If we treat the displacement \(X(s) \) as the input and \(F(s) \) as the output, we can define the impedances of these components (see table).
Example: Problem Stated in the Freq. Domain

Find the transfer function $X(s)/F(s)$ for the following system,

With the understanding that each component's transfer function is its impedance $Z_M(s)$, the force from each component is $F(s) = Z_M(s)X(s)$.

We can draw the free-body diagram with forces in the freq. domain:

Summing these forces we arrive at the same result as before:

$\left(Ms^2 + f_v + K\right)X(s) = F(s)$
Example: Problem Stated in the Freq. Domain

Find the transfer function $X(s)/F(s)$ for the following system,
Example: Problem Stated in the Freq. Domain

Find the transfer function $X(s)/F(s)$ for the following system,

With the understanding that each component's transfer function is its impedance $Z_M(s)$, the force from each component is,
Example: Problem Stated in the Freq. Domain

Find the transfer function $X(s)/F(s)$ for the following system,

With the understanding that each component’s transfer function is its impedance $Z_M(s)$, the force from each component is,

$$F(s) = Z_M(s)X(s)$$
Example: Problem Stated in the Freq. Domain

Find the transfer function $X(s)/F(s)$ for the following system,

With the understanding that each component’s transfer function is its impedance $Z_M(s)$, the force from each component is,

$$F(s) = Z_M(s)X(s)$$

We can draw the free-body diagram with forces in the freq. domain:
Find the transfer function $X(s)/F(s)$ for the following system,

With the understanding that each component’s transfer function is its impedance $Z_M(s)$, the force from each component is,

$$F(s) = Z_M(s)X(s)$$

We can draw the free-body diagram with forces in the freq. domain:
Example: Problem Stated in the Freq. Domain

Find the transfer function $X(s)/F(s)$ for the following system,

With the understanding that each component’s transfer function is its impedance $Z_M(s)$, the force from each component is,

$$F(s) = Z_M(s)X(s)$$

We can draw the free-body diagram with forces in the freq. domain:

Summing these forces we arrive at the same result as before:
Example: Problem Stated in the Freq. Domain

Find the transfer function $X(s)/F(s)$ for the following system,

With the understanding that each component’s transfer function is its impedance $Z_M(s)$, the force from each component is,

$$F(s) = Z_M(s)X(s)$$

We can draw the free-body diagram with forces in the freq. domain:

Summing these forces we arrive at the same result as before:

$$(Ms^2 + f_\nu s + K)X(s) = F(s)$$
Often mechanical systems require more than one DE to describe them.
Often mechanical systems require more than one DE to describe them. The number of DE’s equals the number of **linearly independent motions**.
Often mechanical systems require more than one DE to describe them. The number of DE’s equals the number of **linearly independent motions**. If there are two parts of the system, each of which can be moved while the other is held still, then there are two linearly independent motions or two **degrees of freedom**.
Often mechanical systems require more than one DE to describe them. The number of DE’s equals the number of **linearly independent motions**. If there are two parts of the system, each of which can be moved while the other is held still, then there are two linearly independent motions or two **degrees of freedom**.

This is the same as an electrical network with multiple meshes or nodes.
Often mechanical systems require more than one DE to describe them. The number of DE’s equals the number of **linearly independent motions**. If there are two parts of the system, each of which can be moved while the other is held still, then there are two linearly independent motions or two **degrees of freedom**.

This is the same as an electrical network with multiple meshes or nodes. The quantities governed by the separate DE’s are related.
Often mechanical systems require more than one DE to describe them. The number of DE’s equals the number of **linearly independent motions**. If there are two parts of the system, each of which can be moved while the other is held still, then there are two linearly independent motions or two **degrees of freedom**.

This is the same as an electrical network with multiple meshes or nodes. The quantities governed by the separate DE’s are related. However, changing one does not effect the other in a purely linear way.
Often mechanical systems require more than one DE to describe them. The number of DE’s equals the number of **linearly independent motions**. If there are two parts of the system, each of which can be moved while the other is held still, then there are two linearly independent motions or two **degrees of freedom**.

This is the same as an electrical network with multiple meshes or nodes. The quantities governed by the separate DE’s are related. However, changing one does not effect the other in a purely linear way.

For mechanical systems we use superposition to analyze such systems.
Often mechanical systems require more than one DE to describe them. The number of DE’s equals the number of **linearly independent motions**. If there are two parts of the system, each of which can be moved while the other is held still, then there are two linearly independent motions or two **degrees of freedom**.

This is the same as an electrical network with multiple meshes or nodes. The quantities governed by the separate DE’s are related. However, changing one does not effect the other in a purely linear way.

For mechanical systems we use superposition to analyze such systems. For each independently moving part:

- Assume all other independently moving parts are held still
Often mechanical systems require more than one DE to describe them. The number of DE’s equals the number of **linearly independent motions**. If there are two parts of the system, each of which can be moved while the other is held still, then there are two linearly independent motions or two **degrees of freedom**.

This is the same as an electrical network with multiple meshes or nodes. The quantities governed by the separate DE’s are related. However, changing one does not effect the other in a purely linear way.

For mechanical systems we use superposition to analyze such systems. For each independently moving part:

- Assume all other independently moving parts are held still
- Draw the free-body diagram for the part, consisting of the forces due to its own motion
Often mechanical systems require more than one DE to describe them. The number of DE’s equals the number of **linearly independent motions**. If there are two parts of the system, each of which can be moved while the other is held still, then there are two linearly independent motions or two **degrees of freedom**.

This is the same as an electrical network with multiple meshes or nodes. The quantities governed by the separate DE’s are related. However, changing one does not effect the other in a purely linear way.

For mechanical systems we use superposition to analyze such systems. For each independently moving part:

- Assume all other independently moving parts are held still
- Draw the free-body diagram for the part, consisting of the forces due to its own motion
- Sum the forces to generate the DE or Laplace equation
e.g. Find the transfer function $X_2(s)/F(s)$ for this system,

There are two independently moving parts. Consider the forces on M_1 for the following two situations:

(a) Assume M_2 is held still and M_1 moves to the right

(b) Assume M_1 is held still and M_2 moves to the right

The sum of all these forces is shown in (c):
e.g. Find the transfer function $X_2(s)/F(s)$ for this system,

There are two independently moving parts. Consider the forces on M_1 for the following two situations:

(a) Assume M_2 is held still and M_1 moves to the right

(b) Assume M_1 is held still and M_2 moves to the right

The sum of all these forces is shown in (c):
e.g. Find the transfer function $X_2(s)/F(s)$ for this system,

There are two independently moving parts.
e.g. Find the transfer function \(X_2(s)/F(s) \) for this system,

There are two independently moving parts. Consider the forces on \(M_1 \) for the following two situations:
e.g. Find the transfer function $X_2(s)/F(s)$ for this system,

There are two independently moving parts. Consider the forces on M_1 for the following two situations:

(a) Assume M_2 is held still and M_1 moves to the right
e.g. Find the transfer function $X_2(s)/F(s)$ for this system,

There are two independently moving parts. Consider the forces on M_1 for the following two situations:

(a) Assume M_2 is held still and M_1 moves to the right

(b) Assume M_1 is held still and M_2 moves to the right
e.g. Find the transfer function $X_2(s)/F(s)$ for this system,

There are two independently moving parts. Consider the forces on M_1 for the following two situations:

(a) Assume M_2 is held still and M_1 moves to the right

(b) Assume M_1 is held still and M_2 moves to the right

The sum of all these forces is shown in (c):
e.g. Find the transfer function $X_2(s)/F(s)$ for this system,

There are two independently moving parts. Consider the forces on M_1 for the following two situations:

(a) Assume M_2 is held still and M_1 moves to the right

(b) Assume M_1 is held still and M_2 moves to the right

The sum of all these forces is shown in (c):
The sum of opposing forces should equal the applied force (c):

\[
K_1X_1(s) + f_{v_1}sX_1(s) + f_{v_3}sX_1(s) + M_1s^2X_1(s) = K_2X_1(s) + f_{v_3}sX_2(s) + M_1s^2X_1(s)
\]
The sum of opposing forces should equal the applied force (c):
The sum of opposing forces should equal the applied force (c):

\[
\left[K_1 + K_2 + (f_{v_1} + f_{v_3})s + M_1 s^2 \right] X_1(s) - [K_2 + f_{v_3}s] X_2(s) = F(s)
\]
We now consider the forces on M_2:
We now consider the forces on M_2:

\[
\begin{align*}
(K_2 + K_3 + (f_{v_2} + f_{v_3})s + M_2s^2) X_2(s) - [K_2 + f_{v_3}s] X_1(s) &= 0
\end{align*}
\]
We now consider the forces on M_2:

$$\left[K_2 + K_3 + (f_{v_2} + f_{v_3}) s + M_2 s^2 \right] X_2(s) - [K_2 + f_{v_3} s] X_1(s) = 0$$

Although complicated, we have purely a pair of linear equations to solve.
We now consider the forces on M_2:

\[
\begin{align*}
K_2X_2(s) &\quad (a) \\
fv_2sX_2(s) &\quad M_2 \\
fv_3sX_2(s) &\quad K_3X_2(s) \\
M_2s^2X_2(s) &
\end{align*}
\]

\[
\begin{align*}
K_2X_1(s) &\quad (b) \\
fv_3sX_1(s) &\quad M_2
\end{align*}
\]

\[
\begin{align*}
(K_2 + K_3)X_2(s) &\quad (c) \\
(fv_2 + fv_3)sX_2(s) &\quad M_2 \\
M_2s^2X_2(s) &\quad K_2X_1(s) \\
fv_3sX_1(s) &
\end{align*}
\]

\[
\begin{align*}
\left[K_2 + K_3 + (fv_2 + fv_3)s + M_2s^2 \right] X_2(s) - \left[K_2 + fv_3s \right] X_1(s) = 0
\end{align*}
\]

Although complicated, we have purely a pair of linear equations to solve. The transfer function is as follows,
We now consider the forces on M_2:

$$\begin{align*}
\left[K_2 + K_3 + (f_{v_2} + f_{v_3})s + M_2s^2\right] X_2(s) - \left[K_2 + f_{v_3}s\right] X_1(s) &= 0 \\
\end{align*}$$

Although complicated, we have purely a pair of linear equations to solve. The transfer function is as follows,

$$\frac{X_2(s)}{F(s)} = \frac{f_{v_3}s + K_2}{\Delta}$$
We now consider the forces on M_2:

\[
\begin{align*}
\left[K_2 + K_3 + (f_{v_2} + f_{v_3})s + M_2 s^2 \right] X_2(s) - \left[K_2 + f_{v_3} s \right] X_1(s) &= 0
\end{align*}
\]

Although complicated, we have purely a pair of linear equations to solve. The transfer function is as follows,

\[
\frac{X_2(s)}{F(s)} = \frac{f_{v_3} s + K_2}{\Delta}
\]

where,

\[
\Delta = \begin{vmatrix}
K_1 + K_2 + (f_{v_1} + f_{v_3})s + M_1 s^2 & -(f_{v_3} s + K_2) \\
-(f_{v_3} s + K_2) & [K_2 + K_3 + (f_{v_2} + f_{v_3})s + M_2 s^2]
\end{vmatrix}
\]
Here are the two equations for the previous example again,

\[
\begin{align*}
K_1 + K_2 + (f v_1 + f v_3)s + M_1 s^2 &= F(s) \\
K_2 + (f v_3)s &= 0
\end{align*}
\]

Notice that they both adhere to the following pattern:

(∑ imped's connected to \(X_i\)) \(X_i(s)\) − (∑ imped's between \(X_i\) and \(X_j\)) \(X_j(s)\) = (∑ applied forces at \(X_i\))
Here are the two equations for the previous example again,

\[
\left[K_1 + K_2 + (f_{v_1} + f_{v_3})s + M_1 s^2 \right] X_1(s) - \left[K_2 + f_{v_3} s \right] X_2(s) = F(s)
\]

\[
\left[K_2 + K_3 + (f_{v_2} + f_{v_3})s + M_2 s^2 \right] X_2(s) - \left[K_2 + f_{v_3} s \right] X_1(s) = 0
\]
Here are the two equations for the previous example again,

\[
\begin{align*}
[K_1 + K_2 + (f_{v_1} + f_{v_3})s + M_1 s^2] X_1(s) - [K_2 + f_{v_3} s] X_2(s) &= F(s) \\
[K_2 + K_3 + (f_{v_2} + f_{v_3})s + M_2 s^2] X_2(s) - [K_2 + f_{v_3} s] X_1(s) &= 0
\end{align*}
\]

Notice that they both adhere to the following pattern:
Here are the two equations for the previous example again,

\[
\left[K_1 + K_2 + (f_{v_1} + f_{v_3})s + M_1 s^2 \right] X_1(s) - \left[K_2 + f_{v_3} s \right] X_2(s) = F(s)
\]

\[
\left[K_2 + K_3 + (f_{v_2} + f_{v_3})s + M_2 s^2 \right] X_2(s) - \left[K_2 + f_{v_3} s \right] X_1(s) = 0
\]

Notice that they both adhere to the following pattern:

\[
\left(\sum \text{imped’s connected to } X_i \right) X_i(s)
\]
Here are the two equations for the previous example again,

\[
\begin{align*}
[K_1 + K_2 + (f_{v1} + f_{v3})s + M_1 s^2] X_1(s) &- [K_2 + f_{v3} s] X_2(s) = F(s) \\
[K_2 + K_3 + (f_{v2} + f_{v3})s + M_2 s^2] X_2(s) &- [K_2 + f_{v3} s] X_1(s) = 0
\end{align*}
\]

Notice that they both adhere to the following pattern:

\[
\left(\sum \text{imped's connected to } X_i \right) X_i(s) - \left(\sum \text{imped's between } X_i \text{ and } X_j \right) X_j(s)
\]
Here are the two equations for the previous example again,

\[
\begin{align*}
[K_1 + K_2 + (f_{v_1} + f_{v_3})s + M_1 s^2] X_1(s) - [K_2 + f_{v_3} s] X_2(s) &= F(s) \\
[K_2 + K_3 + (f_{v_2} + f_{v_3})s + M_2 s^2] X_2(s) - [K_2 + f_{v_3} s] X_1(s) &= 0
\end{align*}
\]

Notice that they both adhere to the following pattern:

\[
\left(\sum \text{imped's connected to } X_i \right) X_i(s) \\
- \left(\sum \text{imped's between } X_i \text{ and } X_j \right) X_j(s) \\
= \left(\sum \text{applied forces at } X_i \right)
\]
Here are the two equations for the previous example again,

\[
\begin{align*}
[K_1 + K_2 + (f_{v_1} + f_{v_3})s + M_1 s^2] X_1(s) - [K_2 + f_{v_3} s] X_2(s) &= F(s) \\
[K_2 + K_3 + (f_{v_2} + f_{v_3})s + M_2 s^2] X_2(s) - [K_2 + f_{v_3} s] X_1(s) &= 0
\end{align*}
\]

Notice that they both adhere to the following pattern:

\[
\left(\sum \text{imped's connected to } X_i\right) X_i(s) \\
- \left(\sum \text{imped's between } X_i \text{ and } X_j\right) X_j(s) \\
= \left(\sum \text{applied forces at } X_i\right)
\]

If there were more moving parts then there would be multiple \(X_j \) entries.
e.g. Write the equations of motion for the following system by inspection:

\[
\text{The pattern is as follows,}
\]

\[
(\sum \text{imped's connected to } X_1) X_1 (s) - (\sum \text{imped's between } X_1 \text{ and } X_2) X_2 (s) - (\sum \text{imped's between } X_1 \text{ and } X_3) X_3 (s) = (\sum \text{applied forces at } X_1)
\]
e.g. Write the equations of motion for the following system by inspection:
e.g. Write the equations of motion for the following system by inspection:

The pattern is as follows,
e.g. Write the equations of motion for the following system by inspection:

The pattern is as follows,

\[
\left(\sum \text{imped's connected to } X_1 \right) X_1(s)
\]
e.g. Write the equations of motion for the following system by inspection:

The pattern is as follows,

$$\left(\sum \text{imped's connected to } X_1 \right) X_1(s)$$

$$- \left(\sum \text{imped's between } X_1 \text{ and } X_2 \right) X_2(s)$$
e.g. Write the equations of motion for the following system by inspection:

The pattern is as follows,

\[
\left(\sum \text{imped’s connected to } X_1 \right) X_1(s)
\]

\[
- \left(\sum \text{imped’s between } X_1 \text{ and } X_2 \right) X_2(s)
\]

\[
- \left(\sum \text{imped’s between } X_1 \text{ and } X_3 \right) X_3(s)
\]
e.g. Write the equations of motion for the following system by inspection:

The pattern is as follows,

\[\left(\sum \text{imped's connected to } X_1 \right) X_1(s) \]

\[- \left(\sum \text{imped's between } X_1 \text{ and } X_2 \right) X_2(s) \]

\[- \left(\sum \text{imped's between } X_1 \text{ and } X_3 \right) X_3(s) \]

\[= \left(\sum \text{applied forces at } X_1 \right) \]
Translational Mechanical Systems

Example: Via DE
Example: Problem Stated in the Freq. Domain
Linearly Independent Motions

\[
\begin{align*}
K_1 + K_2 + \text{sf}_v v_1 + \text{sf}_v v_3 + M_1 s^2 X_1(s) &= 0 \\
-K_2 X_2(s) - \text{sf}_v v_3 X_3(s) &= F(s) \\
\text{sf}_v v_3 X_1(s) - \text{sf}_v v_3 X_2(s) + \text{sf}_v v_4 X_3(s) &= 0
\end{align*}
\]
Translational Mechanical Systems

Example: Via DE
Example: Problem Stated in the Freq. Domain
Linearly Independent Motions

\[
[K_1 + K_2 + s f_{v_1} + s f_{v_3} + M_1 s^2] \ X_1(s)
\]
\[
\begin{bmatrix}
K_1 + K_2 + sf_{v_1} + sf_{v_3} + M_1 s^2
\end{bmatrix} X_1(s) - [K_2] X_2(s)
\]
Translational Mechanical Systems

Example: Via DE

Example: Problem Stated in the Freq. Domain

Linearly Independent Motions

\[
\begin{bmatrix}
K_1 + K_2 + s f_{v_1} + s f_{v_3} + M_1 s^2
\end{bmatrix} X_1(s) - \begin{bmatrix} K_2 \end{bmatrix} X_2(s) - \begin{bmatrix} s f_{v_3} \end{bmatrix} X_3(s) = 0
\]
Translational Mechanical Systems

Example: Via DE
Example: Problem Stated in the Freq. Domain
Linearly Independent Motions

\[
\begin{bmatrix}
K_1 + K_2 + sf_{v_1} + sf_{v_3} + M_1 s^2 \\
K_2 \\
f_{v_3} \\
M_2
\end{bmatrix} X_1(s) \quad - \quad \begin{bmatrix}
K_2 \\
f_{v_4} \\
f_{v_2}
\end{bmatrix} X_2(s) \quad - \quad [sf_{v_3}] X_3(s) = 0
\]

\[- [K_2] X_1(s) \]
\[
\begin{align*}
\left[K_1 + K_2 + s f_{v_1} + s f_{v_3} + M_1 s^2\right] X_1(s) - [K_2] X_2(s) - [s f_{v_3}] X_3(s) &= 0 \\
- [K_2] X_1(s) + [K_2 + s f_{v_2} + s f_{v_4} + M_2 s^2] X_2(s) &
\end{align*}
\]
Translational Mechanical Systems

Example: Via DE
Example: Problem Stated in the Freq. Domain
Linearly Independent Motions

\[
\begin{align*}
[K_1 + K_2 + sf_{v_1} + sf_{v_3} + M_1 s^2] X_1(s) - [K_2] X_2(s) - [sf_{v_3}] X_3(s) &= 0 \\
-[K_2] X_1(s) + [K_2 + sf_{v_2} + sf_{v_4} + M_2 s^2] X_2(s) - [sf_{v_4}] X_3(s) &= F(s)
\end{align*}
\]

ENGI 5821 Unit 2, Part 5: Modeling Mechanical Systems
\[
\begin{bmatrix}
K_1 + K_2 + sf_{v_1} + sf_{v_3} + M_1 s^2
\end{bmatrix} X_1(s) - \begin{bmatrix} K_2 \end{bmatrix} X_2(s) - \begin{bmatrix} sf_{v_3} \end{bmatrix} X_3(s) = 0
\]

\[
- \begin{bmatrix} K_2 \end{bmatrix} X_1(s) + \begin{bmatrix} K_2 + sf_{v_2} + sf_{v_4} + M_2 s^2 \end{bmatrix} X_2(s) - \begin{bmatrix} sf_{v_4} \end{bmatrix} X_3(s) = F(s)
\]

\[
- \begin{bmatrix} sf_{v_3} \end{bmatrix} X_1(s)
\]
\[
[K_1 + K_2 + sf_{v_1} + sf_{v_3} + M_1 s^2] X_1(s) - [K_2] X_2(s) - [sf_{v_3}] X_3(s) = 0
\]

\[
-K_2 X_1(s) + [K_2 + sf_{v_2} + sf_{v_4} + M_2 s^2] X_2(s) - [sf_{v_4}] X_3(s) = F(s)
\]

\[
-sf_{v_3} X_1(s) - sf_{v_4} X_2(s)
\]
Translational Mechanical Systems

Example: Via DE
Example: Problem Stated in the Freq. Domain
Linearly Independent Motions

\[
\begin{align*}
\begin{bmatrix}
K_1 + K_2 + s f_{v_1} + s f_{v_3} + M_1 s^2
\end{bmatrix} X_1(s) - \begin{bmatrix} K_2 \end{bmatrix} X_2(s) - \begin{bmatrix} s f_{v_3} \end{bmatrix} X_3(s) &= 0 \\
- \begin{bmatrix} K_2 \end{bmatrix} X_1(s) + \begin{bmatrix} K_2 + s f_{v_2} + s f_{v_4} + M_2 s^2 \end{bmatrix} X_2(s) - \begin{bmatrix} s f_{v_4} \end{bmatrix} X_3(s) &= F(s) \\
- \begin{bmatrix} s f_{v_3} \end{bmatrix} X_1(s) - \begin{bmatrix} s f_{v_4} \end{bmatrix} X_2(s) + \begin{bmatrix} s f_{v_3} + s f_{v_4} + M_3 s^2 \end{bmatrix} X_3(s) &= 0
\end{align*}
\]

ENGI 5821 Unit 2, Part 5: Modeling Mechanical Systems