Rotational Mechanical Systems

Unit 2: Modeling in the Frequency Domain
Part 6: Modeling Rotational Mechanical Systems

Engineering 5821:
Control Systems I

Faculty of Engineering & Applied Science
Memorial University of Newfoundland

January 22, 2010

Rotational mechanical systems are modelled in almost the same way as translational systems except that:

- We replace displacement, \(x(t) \) with angular displacement \(\theta(t) \); Angular velocity is \(\omega(t) \)
- We replace force with torque

For a force \(F \) acting on a body at point \(P \), torque is defined as,

\[T = FR \sin \phi \]

where \(R \) is the distance from \(P \) to the body’s axis of rotation and \(\phi \) is the angle the force makes to the ray from the axis of rotation to \(P \). Hence, if the force is perpendicular to the axis of rotation then,

\[T = FR \]

A rotating body can be considered a system of particles with masses \(m_1, m_2, m_3, \ldots \). The **moment of inertia** is defined as,

\[J = m_1R_1^2 + m_2R_2^2 + m_3R_3^2 + \cdots \]

The total kinetic energy is,

\[K = \frac{1}{2}J\omega^2 \]

Recall that the kinetic energy for a translational system is \(\frac{1}{2}mv^2 \).

So \(J \) is analogous to mass in translational motion. Also, similar to the equation \(F = ma \) in translational systems, we can relate torque and angular acceleration,

\[T(t) = J\frac{d\omega}{dt} = J\frac{d^2\theta}{dt^2} \]

We define the components of our rotational system as springs, viscous dampers, and rotating masses.

<table>
<thead>
<tr>
<th>Component</th>
<th>Torque-angular velocity</th>
<th>Torque-angular displacement</th>
<th>Impedance (Z_M(s) = T(t)\theta(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>(T(t) = K \int_0^t \omega(t) , dt)</td>
<td>(T(t) = K\theta(t))</td>
<td>(K)</td>
</tr>
<tr>
<td>Viscous damper</td>
<td>(T(t) = D\theta(t))</td>
<td>(T(t) = D\frac{d\theta(t)}{dt})</td>
<td>(D)</td>
</tr>
<tr>
<td>Inertia</td>
<td>(T(t) = J\frac{d\theta(t)}{dt})</td>
<td>(T(t) = J\frac{d^2\theta(t)}{dt^2})</td>
<td>(J I_2)</td>
</tr>
</tbody>
</table>

Note: The following set of symbols and units is used throughout this book: \(T(t) \) = N-m (newton-meters), \(\theta(t) \) = rad (radians), \(\omega(t) \) = rad/s (radians/second), \(K \) = N-m/rad (newton-meters/radian), \(D \) = N-m/rad (newton-meters/second/radian), \(J \) = kg-m^2 (kilograms-meters^2 = newton-meters/second^2/radian).
e.g. Find the transfer function \(\frac{\theta_2(s)}{T(s)} \) for the following system:

We model the system in (a) as consisting of two sections joined by a spring. We draw a free-body diagram of \(J_1 \):

(a) \(J_1 \) rotating, \(J_2 \) held still (b) \(J_2 \) rotating, \(J_1 \) held still (c) All torques on \(J_1 \)

Sum the torques in (c)

\[-K\theta_1(s) + (J_2s^2 + D_2s + K)\theta_2(s) = 0\]

We can easily solve these two linear equations for the transfer function \(\frac{\theta_2(s)}{T(s)} \).

Rarely do we see mechanical systems without gear trains. Gears allow us to trade-off speed for torque.

We will assume that connected gears fit perfectly together. However, in reality gears exhibit backlash where one gear will move through a small angle before its teeth meet those of the other gear. This is a non-linear effect that we will not model analytically.
The input gear on the left has radius r_1 and N_1 teeth. It is rotated by $\theta_1(t)$ due to a torque $T_1(t)$. What is the relationship between the rotation of the input gear and that of the output gear, $\theta_2(t)$?

Although, the angles will differ, the arc length through which both gears turn will be the same:

$$r_1 \theta_1 = r_2 \theta_2$$

Therefore the relation between angles is as follows,

$$\theta_2 = \frac{r_1}{r_2} \theta_1$$

Since the number of teeth is proportional to the radius, then the following also holds,

$$\theta_2 = \frac{N_1}{N_2} \theta_1$$

We can relate T_1 and T_2 through energy considerations. The amount of work done by the rotation of gear 1 is $T_1 \theta_1$. We are assuming that no energy is lost, therefore

$$T_1 \theta_1 = T_2 \theta_2 \implies \frac{T_2}{T_1} = \frac{N_2}{N_1}$$

The relationships between gears are pictured as transfer functions below:

Now assume we are interested in the relation between T_1 and θ_1. The torque due to each of the impedances on shaft 2 can be reflected to an equivalent torque on shaft 1. Consider the torque due to the damper on shaft 2:

$$T_{D2} = Ds \theta_2(s) = Ds \frac{N_1}{N_2} \theta_1(s)$$

The relationship between the torques due to the damper is,

$$T_{D1} = \frac{N_1}{N_2} T_{D2} \implies T_{D1} = \frac{N_1}{N_2} Ds \frac{N_1}{N_2} \theta_1(s) = \left(\frac{N_1}{N_2} \right)^2 Ds \theta_1(s)$$
The general pattern for the reflectance of impedances is as follows:

\[T_{\text{dest}} = \left(\frac{N_{\text{dest}}}{N_{\text{src}}} \right)^2 Z M \theta_{\text{dest}} \]

In this manner we can reflect all impedances on shaft 2 to shaft 1:

This system can be modelled as follows,

\[\left(J s^2 \left(\frac{N_1}{N_2} \right)^2 + D s \left(\frac{N_1}{N_2} \right)^2 + K \left(\frac{N_1}{N_2} \right)^2 \right) \theta_1(s) = T_1(s) \]

E.g., find the transfer function \(\theta_2(s)/T_1(s) \) for the following system,

Since the output is defined as \(\theta_2(s) \) we should reflect the impedances from shaft 1 onto shaft 2:

We can now write the equation of motion:

\[(J_e + D_e + K_2) \theta_2(s) = T_1(s) \frac{N_2}{N_1} \]

where,

\[J_e = J_1 \left(\frac{N_2}{N_1} \right)^2 + J_2 \]
\[D_e = D_1 \left(\frac{N_2}{N_1} \right)^2 + D_2 \]

Therefore

\[G(s) = \frac{\theta_2(s)}{T_1(s)} = \frac{N_2 / N_1}{J_e s^2 + D_e s + K_2} \]
If we allow our gears to be large enough we can obtain any desired gear ratio. However, it is usually impractical to allow gears with large radii. Instead, **gear trains** are employed.

The equivalent gear ratio is the product of gear ratios for pairs of meshed gears.

e.g. Reflect all impedances in the abbreviated schematic below onto the input shaft:

![Diagram](image)

\[\theta_1 = \frac{N_1}{N_2} \frac{N_3}{N_4} \theta_1 \]

Solution:

Notice that we are assuming the rotations of all other shafts are directly tied through the gear train to \(\theta_1 \).