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Abstract

We present DeReEs, a real-time RGBD registration algorithm for the scenario

where multiple RGBD images of the same scene are obtained from depth-sensing

cameras placed at different viewpoints, with partial overlaps between their views.

DeReEs (Detection, Rejection and Estimation) is a combination of 2D image-based

feature detection algorithms, a RANSAC based false correspondence rejection and a

rigid 3D transformation estimation. DeReEs performs global registration not only in

real-time, but also supports large transformation distances for both translations and

rotations. DeReEs is designed as part of a virtual/augmented reality solution for a

remote 3D collaboration system that does not require initial setup and allows users to

freely move the cameras during use. We present comparisons of DeReEs with other

common registration algorithms. Our results suggest that DeReEs provides better

speed and accuracy especially in scenes with partial overlapping.
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Chapter 1

Introduction

3D imaging and visualization has been used for many years in medical imaging (such

as in ultrasound, CT and MRI scans), aerial imagery and radar and sonar scanners.

Due to the high costs and complexity of such 3D imaging devices, applications of com-

puter vision were mainly focused on using conventional 2D image cameras for visual

input until recent years when this approach changed drastically with the introduction

of low cost off-the-shelf depth sensing cameras, followed by their open-source SDKs

which spawned a wave of publications and projects in the academia, open-source

communities and the industry.

Depth sensing cameras provide 3D images, with each pixel representing the dis-

tance of a point in the scene to the camera. In some commercial devices, an integrated

RGB camera also provides colour information for each point. Having the depth of a

pixel, the real world coordinates of each point can be calculated by knowing the cam-

era’s horizontal and vertical field of view. This can be used to generate a 3D model

of a scene. In other words, while 2D cameras provide us with colour information that
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represents a view of the scene, 3D cameras provide us with colour and coordinate

information that represent a 3D scan of the scene.

Depth sensing cameras are used to 3D scan the environment. For example they are

used in 3D scanners to build 3D models of physical objects or landmarks ([35], [14],

[63]) which can be used for 3D printing, animation creation, real world modeling, etc.

Having the 3D model of a scene, programs can detect and track objects and surround-

ings ([48], [31], [34]) which is useful in the field of robotics and autonomous vehicles

for the purposes of manufacturing, localization and navigation through obstacles.

They can also identify the presence of a human body ([69]) in the scene along with

its pose and gestures ([38]) which itself has been a source of innovation in the field

of human-computer interaction and health-care. Depth cameras are used as input

devices for a number of popular video game consoles for hands-free control of the

video game and the players’ avatars. They can also be used in health care to assist

diagnosis, rehabilitation and monitoring of care receivers [17].

Depth cameras can also be used in virtual and augmented reality scenarios where

the cameras can identify elements such as people, objects and the environment and

then build avatars and representations of them in the virtual reality environment;

or to augment their visualization with text or visual information in an augmented

reality application.

The motivation behind this research is to create an immersive virtual reality col-

laboration environment using depth cameras. This would allow multiple groups of

remote people to be present in one virtual environment as their avatars - which can

be the 3D model of their physical body - to communicate and collaborate. They can

move and walk around the virtual environment as they would in real world and see
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other participants in their 3D screens or head-mounted 3D monitors. Objects from

the real world or purely virtual objects would exist in this environment as their 3D

representation and participants would be able to interact with them using their hands

or gestures. This can be useful for remote education and remote team collaboration

especially when sharing and visualizing 3D models as protein molecules, 3D seismic

data or models of mechanical parts with the whole team.

While such applications of depth sensing cameras are already possible, certain

limitations exist: the 3D models of a scene or object generated from a single 3D

image would be partial due to occlusions from objects in the scene and the limited

field of view of the camera [66]. For example the 3D model generated from a camera

in front of a participant would only include points representing the front side of the

participant’s body. With a static scene, a single camera can be moved around to

accumulate 3D images from different poses into a single more complete model. In

dynamic scenes, multiple cameras must be used at once to capture the scene and

participants from different angles.

In either case, to combine the 3D images of a scene that are taken from different

points of view (either at the same time or at different times), their relative pose

must be known. For example, to combine two 3D images taken from an object

from completely opposite sides, one of the 3D models should be rotated 180 degrees

to match the other model. This is similar to generating 2D panoramic images by

stitching two or more frames together: each frame is shifted to the left or right to

align with the previous frame. In 3D models, the relative pose between two 3D

images can be described as a 3D transformation with 3 parameters for displacement

(translation) over the x, y and z axes and 3 parameters for rotation around each of
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the axes.

For the purpose of our proposed Virtual Reality application, we have to use mul-

tiple depth cameras to create complete models of our dynamic scenes. It is possible

to find the relative pose and align the models from multiple cameras manually by

trial and error. This can be done by visualizing all the models, then using mouse

and keyboard controls to move and rotate them until they match. However, this is a

tedious task that can be confusing and very time consuming considering there are 6

degrees of freedom (3 axes of translation and 3 directions for rotation) to match each

pair of models.

Another problem arises when any of the cameras move even in the smallest

amount. In this case the models will be misaligned which is visually unappealing

and the whole manual process needs to be re-done to achieve alignment. This greatly

degrades user experience if it happens during a collaboration session. In the proposed

VR application, the position of the cameras may change from day to day to capture

different parts of the environment or even with users slightly colliding and bumping

into the cameras. We are interested in a solution where the setup process for each use

of the application would be hassle free and also the cameras can move freely during

use without breaking the alignment.

This can be achieved if finding the 3D transformation that aligns the input models

together can be automated. In the field of computer vision, this problem is referred

to as registration or alignment. Registration is the process of estimating the transfor-

mation between two images. 3D Registration algorithms would receive a pair of 3D

models as input and generate the 3D transformation that converts the coordinates of

one of the models (the source model) with the other (the target model), so that they
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are visually aligned together.

The transformation between two 3D images is actually the physical transformation

between the positions of the camera(s) when the images were taken. Hence, as well

as being used for creating complete models of a scene or an object, these algorithms

are of great importance in robot localization. In scenarios when a depth camera is

setup on a robot, the transformation between two frames taken at times t1 and t2

tells us how the robot has moved since t1 and where it is currently located at time t2.

For our application, registration algorithms can be performed for each pair of

input streams at every frame, so all the inputs are aligned together even in case

of camera movement. Unfortunately, existing registration algorithms are limited in

terms of robustness and performance:

1) Some registration algorithms such as ICP ([5], [12]) can only tolerate small

transformation distances between the 3D image pairs. In other words, they only

perform well if the two 3D image pairs have very similar initial pose with minimal

translation or rotation (e.g. when cameras are placed very close together). These

algorithms are not suited for our intended use, since we are assuming that we will not

be using too many cameras to capture a scene, hence the cameras have noticeable

distances from each other. For example, 6 cameras might be used to capture a 360

degree view of the participants.

2) Other registration algorithms such as 3D-NDT ([37]) are not as restrictive, but

they do not perform in real time. Proper registration method for the application

of our interest must work in real-time to align frames instantly in case of camera

movement during use.

3) Furthermore, many of the existing algorithms are designed with the assumption
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that the 3D image pairs have major amounts of overlap. In other words, it is assumed

that the majority of the points in the two models represent the same parts of the

scene. This causes these algorithms to fail registration in scenarios when the images

have noticeable non-overlapping (exclusive) portions, which can happen even with

small transformations, especially with camera rotation. This usually happens because

these algorithms aim to minimize a distance based error metric such as the sum of

absolute distances between the points of the two 3D images. In the case of large

non-overlapping portions, this type of metrics produces large undesired errors even

with the right transformation, because the right transformation essentially puts the

non-overlapping parts of the clouds away from each other.

This research is dedicated to introducing a registration technique that would per-

form in real-time with 6 degrees of freedom and minimal restrictions on the cameras

initial poses and the amount of overlap between the images. The proposed registration

technique would be usable with common off-the-shelf RGBD cameras.

1.1 Research Questions and Hypotheses

Following are the research questions with respect to the requirements of this research

and related hypotheses.

1. Is it possible to register 3D images with large amounts of transformation dis-

tance and large non-overlapping portions? We are assuming that for the pur-

pose of this work, two or three cameras are used to capture a scene or character

with the goal of providing a wider field of view. This implies that the cameras

are positioned far from each other and/or might be close to each other but are
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pointing towards different directions such that only a small fraction of the scene

is shared by both cameras’ views. We are aware that some existing registration

algorithms can tolerate relatively large transformation distances to some extent

if the image pairs are capturing mostly the same scene, but none that we are

aware of tolerates relatively large non-overlapping portions where noticeable

amounts of mutually exclusive parts exist in both point clouds. We hypothe-

size that our proposed algorithm tolerates large transformation distances (3− 5

meters in translation 30 − 50 degrees for rotation) and images with only 50%

overlap or more.

2. Is it possible to have a real-time registration method? We hypothesize that using

GPU implementation our proposed algorithm will run at a rate such that both

initial alignment of the collaborative environment and maintaining alignment

in case of camera movement during use of the system would be performed

instantly. For effectiveness of our algorithm in such a scenario, we are expecting

the algorithm to perform at the rate of at least 12 frames per second.

3. Is it possible to have a hassle-free user experience where there is no need for

user input regarding the camera setup and alignment? The main purpose of

proposing a new registration technique for our scenario is to remove human

assisted setup and make the collaboration experience as automated as possible.

We think that the proposed registration technique can successfully initiate the

registration even in case of large camera distances, without user’s intervention.

The number of the cameras and their relative position and orientation (or pose)

can be estimated in real-time without any user’s assistance. The same is true
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for maintaining the alignment during the session. Since the pose estimation

is performed in real-time, in case of changes to camera’s physical setup, the

system will automatically adapt to the change.

4. Does the registration rely on optimal scene configuration in terms of feature-

richness, brightness and repetitive patterns? The accuracy of the algorithm with

non-optimal scenes such as dimmed environments, feature-less scenes or scenes

with repetitive patterns, heavily relies upon the quality of the correspondence

detection of the algorithm. In this regard, we have three hypotheses:

• The image registration system proposed can perform adequately under

varying conditions of feature-richness in the scene.

• The image registration system proposed can perform adequately under

varying conditions of brightness in the scene.

• The image registration system proposed can perform adequately under

varying conditions of repetitive patterns in the scene.

In each of these cases, the risk of faulty registration increases due to incorrect

feature detection and matching, but we believe that by using more conserva-

tive parameters we can achieve better results with the feature detection and

matching algorithms to detect corresponding pairs, as well as performing a

more rigorous false corresponding pair rejection. This will cause the algorithm

to display an unnoticeable increase in execution time, still maintain its real-time

performance. We have assessed these hypotheses through our experiments.
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1.2 Contributions

The primary contribution of this research is a novel yet simple registration technique

for 3D coloured image streams which we refer to as DeReEs. The secondary contri-

bution is a data-set of 3D image sets, with each set including 2 to 5 images of one

scene captured from different poses with known ground truth transformations which

would be helpful to the research community for experimenting with and benchmarking

registration algorithms (accessible at [56]).

The proposed algorithm (described in details in chapter 4) is performed through

the following steps: 1) Corresponding Pair Detection, 2) False Corresponding Pair

Rejection and 3) Transformation Estimation. The first step is based on existing

2D RGB feature detection and matching algorithms. The major contributions of

this work lies in the second step which consists of: 1) a Random Sample Consensus

(RANSAC [22]) based outlier detection method for detecting false corresponding pairs

captured from the previous step which can be repeated iteratively for more accurate

results and 2) an accurate metric for scoring proposed transformations regardless

of the amount of overlapping. The third step consists of a simple transformation

estimation based on remaining corresponding pairs after false pair rejection.

Each major part of this technique (feature detection and matching, outlier de-

tection, scoring and transformation refinement) is fully independent and modular.

Throughout this thesis we demonstrate how our choices for each of the steps (ei-

ther from the existing solutions or our proposed methods) perform better than the

alternatives we have considered so far.

Our experiments show that the proposed registration technique performs at 27
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frames per second with GPU implementation of its components with a 640 × 480

frame resolution in indoor environments. It places minimal restrictions over the 6

degrees of freedom. It performs successfully with images of only 23% overlap and in

challenging conditions such as: feature-less scenes, low lit environments and scenes

with repetitive patterns.

The data-set (described fully in section 5.1) is captured in indoor lab and office

environments with a Kinect camera at 640x480 resolution. The images are saved in

PCD format which can be directly used with the open-source Point Cloud Library

(PCL [53]). The scenes and camera poses are selected in a way to produce a data-set

that is varied in many aspects: feature-richness, amounts of overlap, transformation

distance, translation and rotation direction, distance of the camera from the objects

and brightness. The ground truth transformation between the images of a scene

are visually estimated with 0.5degree and 1cm accuracy and are saved as 4 × 4

transformation matrices in plain text.

1.3 Methodology

The robustness of registration algorithms is highly dependent on the many param-

eters of the image sets it is used with; parameters such as transformation distance

between image pairs, visual or spatial feature-richness, brightness and distance from

the camera. This made us take two major decisions for the evaluation of our work:

• Existing 3D data sets for registration and pose estimation did not satisfy the

different conditions required for our different types of experiments or were lim-

ited in their number of frames, variety of scenes and transformation distance.
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We generated our own data-set which resembles the scenarios that might occur

with the virtual reality collaboration tool under varying circumstances.

• To better understand the shortcomings of the existing registration algorithms

for our intended use, we experimented with their implementations using our

data-set rather than relying on the reported evaluations in their respective pub-

lications, since those evaluations were done using a variety of configurations and

data-sets.

For the implementation of the existing registration algorithms, we chose the Point

Cloud Library (PCL) for being the standard open-source library for 3D model pro-

cessing in the research community and because it includes implementations of the

ICP and 3D-NDT algorithms.

To experiment with RGB based registration algorithms, we used the Open Source

Computer Vision library (OpenCV [9]) for RGB feature and edge extraction. By

combining the tools in OpenCV and PCL, we were also able to implement one of the

existing feature-based registration algorithms (RGBD-ICP [30]) for experimentation

purposes.

Based on our experiments, we understood early on that algorithms that use dis-

tance based error metrics are not suitable for large transformation distance and non-

overlapping models. An RGB-based registration approach was chosen since it offered

a less restricted solution. Unlike ICP and 3D-NDT, RGB-based solutions require hav-

ing colour information of the model, but since our intended use is for Virtual Reality,

colour information is available from the RGB enabled depth sensors.
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Our proposed technique is based on existing RGB feature detection algorithms.

For these algorithms, we used the OpenCV library for being the standard open source

image processing library in the research community and also for having GPU imple-

mentations of multiple feature detection algorithms. Our implementation also uses

the PCL library for IO tasks, visualization of the models and model processing.

Using these two libraries allows the research community to easily build their im-

plementations of our algorithm without having to implement many of the existing

parts of it, as well as providing the modularity which allows researchers to replace

any of its components with their own work. Likewise, MicrosoftTM Xbox 360 Kinect

camera was used as our depth sensor which is compatible with the PCL library and

is regularly used by the research community in robotics and computer vision.

1.4 Outline

Chapter 2 explains the main concepts required for understanding this work, includ-

ing: depth sensing cameras, point cloud processing, the registration problem, its

applications and RGB feature detection. This chapter can be skipped for the more

advanced readers. Chapter 3 discusses the work of other researchers that has been

done for solving the registration problem, including ICP and its variants, 3D-NDT

and feature-based registration methods, their advantages and limitations. Chapter 4

explains our proposed algorithm in depth, also discussing different alternatives and

approaches at each of its steps and proposes possible improvements. Chapter 5 ex-

plains the process of data-set collection and ground truth transformation estimation,

followed by experimentation and comparison of our proposed algorithm to determine
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the validity of our work and hypotheses. Finally, at chapter 6 we provide a summary

of the contributions and conclusions made throughout the work and possible future

work and further improvements.
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Chapter 2

Preliminaries

In this chapter we will explain some of the concepts in computer vision and image

processing required for better understanding the context of this research. Advanced

readers who are familiar with these topics can skip to chapter 3 for an overview of

existing registration algorithms or chapter 4 for a detailed explanation of our proposed

algorithm.

2.1 Range Sensing

A regular digital camera provides us with frames that represent the scene. Each frame

consisting of an array of pixels, with each pixel representing a point in the real world.

In an RGB image each pixel is defined by Red, Green and Blue values which make

up the colour of the point in the real world. With a depth sensor (also referred to as

3D cameras), the pixel is defined by a depth value which indicates the distance of the

respective point in the real world to the camera. The accuracy of this value depends

on the sensor itself; off-the-shelf sensors can be accurate up to millimeters. Many of
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the commercialized depth sensing cameras also provide an RGB image along with the

depth image.

Estimating the depth of scene elements to a sensor, also known as “range sensing”,

is possible through a variety of methods. All of the approaches used for range sensing

depend on emitting a signal (radio, light, etc.), reading its response from its reflection

on the scene and analyzing it against the original signal. This makes most of these

approaches vulnerable to reflective surfaces, since for specular surfaces the majority

of the original signal is reflected in a direction other than the sensor, which is usually

located close to the emitter; with the exception of where the specular surface is

perpendicular to the direction of the signal itself. For diffuse surfaces, the signal is

scattered back in many different directions, improving the chances that the sensor

will pick up its response.

Below are some of the primary methods that have been used for estimating the

depth value (also referred to as Z value) in traditional and recent range sensing devices.

2.1.1 Radar, Sonar and Lidar

Radar (short for Radio Detecting and Ranging) has been widely used specially in

military and safety. Radars use an emitter to send a radio wave to the desired

direction and sense the reflection. While the long wave length of the radio signals

has an inverse effect on the resolution of the estimation, radio waves penetrate most

materials, except for metals, seawater and wetlands and have a long range, making

it desirable for aerial or sea vehicles. Using the Doppler effect, the movement of an

object can be detected by the slight change in the frequency of the response signal
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[37].

Sonar devices work similar to Radars, except that they use sound waves. They are

mainly used in water as the long wavelength of the sound waves and the characteristics

of water itself allow the signal to travel to extremely far distances without attenuation.

Lidar (Light Detecting and Ranging), also known as Ladar (Laser Detecting and

Ranging), uses focused light beams as its signal. The short wavelength of the light

makes the resolution finer, while limiting the signal range and making it vulnerable

to fog, smoke and dust.

With any of these signals, there are three main methods to estimate distance

based on the characteristics of the returning reflection: Time of Flight, Phase Shift

and Triangulation, which we discuss independently in the following sections.

2.1.2 Time of Flight

Knowing the speed of the emitted signal, we can measure the distance of the object

that reflected the signal based on the time it took for the signal to travel back. It

is widely applied in many areas such as autonomous navigation, meteorology and

geology. One of the most notable implementations of Lidar is the Velodyne HDL-64E

camera widely used by scholars, such as in Kitti [24] and [45]. It uses an array of 64

laser emitters to provide a 3D scan using time of flight. The array rotates at high

speeds providing 360◦ degree horizontal and 26.8◦ vertical scans of the surroundings

at 5-15Hz [1].
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2.1.3 Phase Shift

The shift in the phase of the emitted signal can indicate the distance of the object if

the wavelength and the frequency of the signal are known. In cameras such as SICK

LMS 200 that use this method, an array of infrared LEDs is used to illuminate the

scene with different modulations. The drawbacks of Phase Shift calculation is the

short range of the infrared beam (typically less than 10 meters). The other limiting

factor for the range coverage of this method is the fact that for a signal with a

wavelength of w, a reading of range x is not identifiable from reading ranges w + x,

2w + x and so on and the phase shift for all of these distances is the same [37].

2.1.4 Triangulation

In triangulation, the angle at which the reflected laser beam enters the sensor is

measured. Having the measurement of this angle, the distance of the emitter to the

sensor and the size of the sensor, distance of the object to the emitter can be calculated

(Figure 2.2). Similar to the phase shift, the main drawback of triangulation based

range sensing is its short maximum range for light beams [37].

2.1.5 Stereoscopic Vision

One of the techniques used by the human visual system to perceive depth of objects

is Stereopsis. Since our eyes are positioned at slightly different places on our head,

they provide the brain with two slightly different views of the scene we look at.

The amount of displacement of a particular element between the images of the

two eyes varies depending on the distance of the object. This helps the brain perceive
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Figure 2.1: Triangulation: when the emitter and receiver are parallel, the triangular

proportions can be used to determine b1, by knowing a1, a2 and b2. In a non-parallel

setup, knowing the angle between emitter and receiver is required as well.

the element’s depth. Objects that are closer to the viewer have greater position

displacement, while further objects have less of a displacement.

Stereo Vision techniques use the same approach using RGB cameras. Two digital

cameras can be used to capture two slightly different images if they are positioned

close together. Corresponding pixels or patches between the two images can be iden-

tified using the colour characteristics of the pixel and its neighbours, and the dis-

placement in the projected images can be calculated in terms of pixels. Having the

configuration of the camera at the time of image capture such as focal length which

is also available as header information in compressed image formats, it is possible to

estimate the distance of each pixel/patch based on its displacement.

Stereoscopic vision has been widely discussed in literature and also commercialized

in devices such as Sony HDR-TD10 for producing 3D videos. There are many different

stereoscopic depth estimation algorithms, many of which are compared by Scharstein

and Szeliski [58], Sunyoto et al. [61] and in the Kitti Vision Benchmark Suite [24].
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2.1.6 Structured Light

In this method, beams of light from a light source are projected onto the scene in a

structured manner (e.g. stripes or a matrix of dots) and a sensor would capture how

the structure is distorted when it is reflected back from the objects in the scene. An

overly simplified example would be the flashlight: its projection would appear bigger

on further objects and smaller on closer objects. This method is used solely such as

in [67] and [54], or in conjunction with other methods such as in Microsoft Kinect

and [8].

One drawback of this method is the choice of pattern which dictates the resolution

of the sensing. In case of stripes, only the distance of points at which colours change

can be measured. Another approach would be to use a coloured gradient so that

every pixel can be measured, but this only works for scenes with minimal texture and

changes in colour. Another problem with structured light methods is the interference

between multiple light sources, which can be mitigated in some cases [10]. Different

methods of capturing and analyzing in structured light are discussed in [23].

2.2 Point Clouds

A point cloud is a collection of points with 3D coordinates p(x, y, z) that represents the

point’s position. Potentially, the point might have many other properties, including

but not limited to: colour information (RGB), opacity or alpha (A), normal vector

at that particular point (N(x, y, z)), etc.

Until so far, we have only discussed how the Z-value (depth) is measured using

the depth cameras. Having a depth frame, the values for x and y can be calculated
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assuming that the Z value and the camera’s field of view is known.

Figure 2.2: Top-down view of a sample scene in triangulation: the real-world coordi-

nate of a pixel, such as the distance of the point to the camera in the horizontal place

(W ), can be determined by having the pixel depth value (Z) and the α angle. α is

determined by knowing the field of view of the camera and the position of the pixel

in the RGB frame (w′).

To determine the colour information of a point, it should be noted that in depth

cameras with RGB support (RGBD cameras), the depth sensor and the RGB camera

are separate pieces, hence they are located at slightly different positions of the unit.

This causes a slight misalignment between the depth frame and the RGB frame.
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(a) View from the camera’s point of view. (b) View from above the camera.

Figure 2.3: Visualization of a point cloud from different angles.

Consequently, some pixels at the edges of the depth image lack colour information,

and some RGB pixels lack depth. In order to be able to combine the depth frame and

the RGB frame information into a point cloud, a 2D registration is required unless the

exact misalignment of the cameras is known. In commercial devices such as Microsoft

Kinect, the device driver automatically aligns the RGB and depth frames.

A point cloud can be easily visualized using any graphic rendering engine such as

OpenGL or using more sophisticated tools such as game engines. Figure 2.3 shows

the visualization of a single point cloud captured in our lab from different angles.

There are a number of algorithms and applications that are of interest in point

cloud processing which is explained here briefly. Registration is described indepen-

dently in the next section.
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2.2.1 Surface Normal Estimation

Assuming that every point in the cloud is part of a surface, estimating the normal

vectors of that surface for every given point is a basic yet important calculation that is

mainly required for other advanced algorithms. There are many methods to estimate

the normal vectors of a surface.

One of the simplest ones is by fitting a plane for the nearest neighbours of each

point. By having the plane, the direction of the normal is known but there are two

possibilities for the orientation of the normal. Knowing the fact that the front of a

surface on a point cloud captured from a depth camera cannot be on the side which is

opposite to the camera, the orientation can also be estimated by knowing the camera

view point. Other methods may rely on surface reconstruction or the point cloud

mesh. A more detailed discussion on normal estimation in noisy point clouds is found

in [16].

2.2.2 Surface reconstruction and volume rendering

As mentioned earlier, each pixel in the depth map and RGB image which make up

the point cloud represents only one point in the real world. Hence, the point cloud

derived directly from a depth camera is essentially a collection of sparse points with

gaps in between points. The size of the gap depends on the resolution of the camera

and the distance of points to the camera. Figure 2.4 shows the same point cloud in

figure 2.5a when zoomed in.

To improve the quality of the visualized point cloud, or to extract a more complete

model for further processing, surface reconstruction techniques are employed to derive
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Figure 2.4: Visualization of a point cloud. Raw point clouds from depth sensing

cameras are often a sparse collection of points with visible gaps in between.

a mesh from the point cloud. Volume reconstruction is used to fill the point cloud.

One of the examples of surface reconstruction algorithms for visualization is surface

splatting [73] which works based on the fact that the colour of every pixel in the final

rendered image is a blend of the points that fall into or close to that pixel from a

certain camera view. The colour of a point is determined by the colour and density

of its neighbouring points.

Another method by Marton et al. [39] generates meshes using triangulation: it

determines the points that belong to the same surface based on their position and

connects them to form triangles which make up the mesh. The mesh can be either

rendered or used for other applications.
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2.2.3 Down Sampling (sub-sampling)

3D data processing can be a resource intensive task when the algorithms perform in

orders higher than O(N) (N being the number of points in the cloud). For example

for surface reconstruction, processing one point requires processing its neighbouring

points. In the ICP registration algorithm, processing each point from one cloud

requires finding its corresponding pair in the other cloud, which requires O(N2) if

not optimized. The resolution of off-the-shelf depth cameras is often high enough

to hinder such algorithms considerably. For example the Kinect camera provides a

640 × 480 resolution (307,200 points) in real time. This number of points can make

registration algorithms such as ICP take minutes per frame.

Furthermore, not all points in the cloud can further contribute to some algorithms.

Many of the points in a cloud might be redundant due to the high density especially

on surfaces that are very close to the camera. In such scenarios, down sampling is used

to reduce the number of points in the cloud while preserving the model it represents.

The simplest approach for down sampling is filtering points randomly with equal

chances from the point cloud. This is an extremely fast and efficient approach, but it

may not be the best solution in scenarios when objects close to the camera contribute

a large number of points, while objects far from the camera only make up a small

portion of the point cloud. Choosing points randomly in this scenario will decrease

the already limited quality of the point cloud for surfaces located farther away.

A simple approach to solve this problem introduced by Magnusson [37] is dividing

the point cloud by uniform cells, randomly selecting one point from a random cell

and repeating until a certain criteria is met (e.g. based the total number of selected
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points or ratio). This will assure that different areas of the point cloud have equal

chance to be included in the sub-sampled point cloud since the number of points in

an area does not increase the chance of points being selected in that area.

More intuitive down sampling approaches may be applied for other scenarios. For

example, we may choose the sub-sampled points in a way that we favour preserving

a wider range of normal vectors. We may also select more points from parts where

changes in the normal vectors are detected, so that we preserve scene features such

as edges.

2.3 Registration

Each point cloud has its own independent coordinate system. For example, a point

cloud captured from a camera might use a Cartesian coordinate system with the

origin O(0, 0, 0) at the camera position, using a right-handed approach with the Z-

axis pointing forward from the camera and X-axis point downward.

When capturing one scene from two different positions, the coordinates of the

generated point clouds differ. For example in image 1, object A is closer to the

camera and its points have smaller Z values; while in image 2, the same object is

further from the camera due to camera movement and the same points have larger

Z values and in general, different coordinate values. As a result, if we visualize two

point clouds captured at different positions from the same scene, the results would

be two misaligned point clouds (figure 2.5c).

Assuming that we have two point clouds from the same scene (PA and PB), if

the point clouds have some overlapping regions, then some of the points from PA
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(a) First point cloud (b) Second point cloud

(c) Visualization of the accumulation of both

point clouds without registration

(d) Visualization of the accumulation of both

point clouds after registration

Figure 2.5: Visualization of two point clouds captured from different points of view

will generate misalignment.
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represent the same areas that some of the points from PB represent. This is known as

correspondence. Two points (one from PA and one from PB) that represent the same

area of the real world are referred to as corresponding pair. The term corresponding

pair is not limited to point clouds and is used in 2D images as well.

Registration focuses on estimating a transformation that transforms one image

to the other in a way that corresponding pairs would have the same or similar co-

ordinates, so that the visualization of both inputs looks aligned (figure 2.5d) as the

end-user would expect. The point cloud that is transformed is referred to as the

source, and the point cloud that is used as the goal of transformation is referred to

as target.

It should be noted that corresponding pairs are not strictly “corresponding”,

meaning that even after a successful registration, their coordinates will not be ex-

actly the same. This is for two reasons: firstly, the depth estimation obtained from

the device is not 100% accurate, and hence the values calculated for the coordinate of

a point, which are all derived from the Z, are only accurate to some extent. Secondly,

even if we assume that our camera is ideal, the areas that a pixel from an image

covers is typically much larger than the area it represents in the real world, more so

for far objects. Hence it is unusual for a corresponding pair to represent the exact

same point in the world. The limitation of imaging resolution is tightly coupled with

this limitation.

For 2D registration, the transformation can be represented by a 2D translation

in the direction of (x, y) axes and a rotation. In 3D registration, there are 6 degrees

of freedom: 3 directions for translation in (X, Y, Z) axes and 3 directions of rotation

around each of the axes (also referred to as roll, yaw and pitch).
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There are multiple ways to represent a 3D transformation. Translation is often

represented by a vector of 3 elements. Rotation can be defined by Euler angles, which

is a vector of 3 elements each describing the rotation around each axes.

Translation = [tx, ty, tz]

Rotation = [rx, ry, rz]

(2.1)

It can also be represented in a 3D rotation matrix. Rotation matrices have useful

properties such as: 1) multiplying two rotation matrices results in a rotation matrix

that represents the same rotation from applying the two rotations sequentially. 2)

Transpose of the rotation matrix is equal to the inverse rotation. The rotation matrix

can be determined by the [rx, ry, rz] values shown below. c and s in equation 2.2

respectively represent cosine and sine functions.

Rotation =


c(ry)c(rz) c(ry)s(rz) −s(ry)

s(rx)s(ry)c(rz)− c(rx)s(rz) s(rx)s(ry)s(rz) + c(rx)c(rz) s(rx)c(ry)

c(rx)s(ry)c(rz) + s(rx)s(rz) c(rx)s(ry)s(rz)− s(rx)c(rz) c(rx)c(ry)


(2.2)

Another representation of rotations is the Quaternion which is often used in com-

puter graphics since they use less memory, compose faster, and are naturally suited

for efficient interpolation of rotations [29].

A 3D transformation can be represented as a 4x4 3D transformation matrix such

as below with the top left 3x3 portion describing the rotation and the column on the
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right describing the translation.

Rotation =



c(ry)c(rz) c(ry)s(rz) −s(ry) tx

s(rx)s(ry)c(rz)− c(rx)s(rz) s(rx)s(ry)s(rz) + c(rx)c(rz) s(rx)c(ry) ty

c(rx)s(ry)c(rz) + s(rx)s(rz) c(rx)s(ry)s(rz)− s(rx)c(rz) c(rx)c(ry) tz

0 0 0 1


(2.3)

An in depth explanation of existing registration algorithms is provided in Chap-

ter 3.

2.4 Applications of Registration

Most application of 3D registration can be generally categorized as: 1) Localization

and 2) 3D Model Generation.

2.4.1 Localization

Recent commercialized depth cameras are widely used with robots due to their com-

pact size, energy efficiency and low costs. The depth camera can offer a number of

valuable information to the robot such as distance to obstacle, scene construction,

presence of human or known objects, etc. One of the major fields of research in

robotics is robot localization which aims to determine where the robot is located in

the real world or in relevance to its starting position; also referred to as SLAM systems

(Simultaneous Localization And Mapping). Use of 3D data for SLAM is important in
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scenarios where other methods such as GPS or odometry are not possible or accurate

enough.

Registration algorithms can help with determining the movement of the robot.

The transformation between two 3D images is the same physical transformation of

the camera(s) that captured the images. If the depth camera which in mounted

on a robot captures two frames while moving, the transformation between the two

frames indicates how exactly the robot has moved. This helps indicate the position of

the robot relevant to its starting point if frames are taken frequently and the trans-

formation between the last two frames is accumulated with the previously calculated

transformations. Outdoor SLAM [13], underwater SLAM [55] and underground local-

ization [37] are examples of applications of registration in localization of autonomous

vehicles.

2.4.2 3D Model Generation

3D model generation or 3D scanning is the process of modeling real world elements

into 3D models. The use of the generated 3D model varies based on application. In

this research, we are focused on modeling characters, environments and objects for

the purpose of visualizing them in a virtual reality collaborative environment.

Since a single frame of 3D scan is not enough for most applications of 3D modeling

due to occlusions and limited field of view, the depth camera is usually moved around

the scene to capture the elements from all necessary points of view. In such cases

([31], [19], [63]), depth cameras can act as hand-held 3D scanners which can be used

to scan objects, indoor environments and the human body. In some applications, the
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camera is fixed and the objects are placed on a moving platform to be scanned from

different views.

In such scenarios, the different frames that are generated for the purpose of mod-

eling need to be merged together to form a complete model. This requires estimating

the transformation between frame pairs. Registration algorithms are designed to

estimate this transformation by analyzing the input image pairs.

2.5 RGB Feature Detection and Matching

In image processing and computer vision, feature detection refers to algorithms that

identify “interesting” pixels in an image. The exact definition of “interesting” varies

among different methods, but in general, features refer to points or set of points

that have noticeable difference in their properties (colour, intensity, etc.) from their

neighbouring points. Feature detection algorithms can be divided into 3 categories

based on the type of feature they extract:

2.5.1 Corners

The term corner is misleading since corner refers to not only corners, but any point in

the image that stands out in its local region (e.g. a black spot on a white background).

Corners are also referred to as interest points. SURF (Speeded Up Robust Features)

by Bay et al. [3], SIFT (Scale Invariant Features) by Lowe [36] and ORB (Oriented

BRIEF) by Rublee et al. [51] are some of the more popular works in this area.
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2.5.2 Edges

These features refer to pixels/lines of an image that represent the connection of two

or multiple regions (e.g. when pixels belonging to an element meet pixels of another

element in the image). While simpler algorithms only identify pixels that are detected

as edges, some algorithms detect clusters of pixels with each cluster representing the

different parts of a single edge. Canny detector [11], Hough lines detector [42] and

[62] are some of the well-known works in edge and line detection.

2.5.3 Blobs/Regions

Rather than points or lines, blobs refer to a set of points or regions of an interest in

an image. MSER (Maximally Stable Extremal Regions) [41] and PCBR (Principal

Curvature-Based Region detector) [15] are examples of region detection algorithms.

2.5.4 Feature Descriptors

An important part of the feature detection algorithms are feature descriptors. The

extracted features are described by descriptors which can then be used for further

processing. Descriptors are data structures consisting of measurements based on the

observed properties, often between the interest point and its neighbours.

Feature detection algorithms are often the first step in the pipeline of computer

vision applications. In some scenarios, a comparison of an image pair is required

which can be achieved by matching the feature descriptors of the images. This is

known as feature matching. Feature matching is used to identify similar elements in

two images to detect known shapes or objects or to match images.
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For this to work, the descriptors of the feature detector need to provide similar

results for the same elements in different images. This defines repeatability as one

of the most important properties of good feature detectors: the ability to yield the

same results under different conditions such as different viewing angle or lighting.

Especially for the purpose of registration, invariant feature detectors are of great

importance. With invariant feature detector, the results of the feature detection

(descriptors) do not change if a transformation is applied on the input images. For

example, in scale-invariant feature detectors the scale of the image does not affect

the results: the descriptors of the features are not affected (invariant), although the

positions of the features are affected according to the transformation. With rotation-

invariant feature detectors, rotation of the camera or the image does not affect the

descriptors. In registration the image pairs are taken from different viewing angles and

possibly with camera rotation, thus, both scale and rotation invariance is required.

The effectiveness of the descriptors is an important factor in the effectiveness of

the feature matching algorithms. The size of the descriptors affect the speed of feature

matching, while an overly small sized descriptor might not describe the feature in a

distinct way.

Brute force is the most straightforward method for feature matching. Each de-

scriptor from one image can be compared to all descriptors from the other image and

the closest descriptor is selected, however this yields O(N2) complexity and slows

execution time. FLANN-based matchers use FLANN nearest neighbour search (Fast

Library for Approximate Nearest Neighbour search) [46] for finding the closest de-

scriptors to the trained descriptor set. This method might be faster than brute force

with large number of descriptors.
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For a comprehensive review of different feature detection algorithms, refer to “Lo-

cal Invariant Feature Detectors: A Survey” by Tuytelaars and Mikolajczyk [65]. A

detailed performance comparison of different feature detection and description meth-

ods for the purpose of feature matching is presented in [44].
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Chapter 3

Related Work On Registration

A significant amount of research has been dedicated to the registration problem in

computer graphics, vision and robotics community. Since we are interested in an

automated solution for the virtual reality collaboration environment, in the remainder

of this thesis and in this review of related work on registration we only focus on

registration algorithms and techniques that are not assisted by human input.

There are three main challenges regarding existing registration algorithms that

are particular to our application domain and prevents us from using them in our

solution:

1. Initial Pose: initial pose refers to how the point clouds are positioned relative to

each other. In most scenarios, the initial pose is the default pose generated by

the cameras without any transformations applied to it. Many of the algorithms

start from the initial pose and try to minimize or maximize a certain metric

iteratively until they reach the ideal pose.

Over the solution space which consists of every possible transformation, the
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ideal transformation is considered a global optimum which minimizes an er-

ror metric or maximizes a score better than any other transformation. The

minimizing/maximizing function and metric implemented in many algorithms

searches for the global optimum locally around the initial pose. Hence, such

algorithms are prone to local optimums (see figure 3.1).

In our proposed application scenario, multiple cameras are used simultaneously

to capture the scene and users from different angles to provide an almost com-

plete model of the scene to other users who are virtually present in the envi-

ronment. To prevent using numerous cameras with minimal initial pose, only

a handful of cameras are used with noticeable angle differences and distances.

Hence, our solution requires to successfully register images that have large initial

pose distances.

2. Speed: many of the current registration techniques are not capable of processing

the large input from depth cameras directly in real-time (refer to Chapter 5 for

experiment results). This is due to the fact that depth cameras such as Microsoft

Kinect provide 640x480 frames which make up 307,200 points in each frame;

hindering the algorithms that perform in orders of bigger than O(n). To speed

this up, down sampling (discussed in 2.2.3) is applied to the point cloud prior

to passing it to the registration algorithms. A rigorous down sampling will

degrade the quality of the point cloud which might cause errors in estimating

the transformation, while a less restricted down sampling does not allow the

algorithms to perform in real time. Moreover, it should be noted that the down

sampling process itself consumes time.
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Figure 3.1: A simplified view of the initial pose problem. Red circles represent initial

pose and arrows indicate the algorithms’ solutions. Score maximizing or error min-

imizing functions in many registration algorithms is prone to local optimums when

the initial pose is far from the optimal solution.
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3. Extent of Overlap: we define overlap as the portion of the two input point

clouds that represent the same elements in the scene. In our application, the

non-overlapping portions are a result of different placements of the capturing

devices when taking the image pairs. Many algorithms only perform well when

the input point clouds share most of the scene and no major portion of the scene

belongs to only one of the 3D images. These algorithms are designed to either

minimize an error metric or maximize a score metric, both of which describe how

good a proposed transformation is. However, if the metric does not work well

under different conditions (including with small amounts of overlap), then the

measurements based on that metric under those conditions will not represent

the correctness of the proposed transformations, making the algorithm discard

the correct solution.

The problem with non-overlapping sections happens with many of the distance

based metrics. As an example, Sum of Absolute Distances (SAD) can be calcu-

lated between the points of one cloud to the closest points of the other cloud,

and the algorithm may aim to minimize this distance to achieve the solution

transformation. Assuming two point clouds which capture almost the same

scene from different angles with minimal non-overlapping portions, this metric

generates lower errors when the clouds are pushed together in a way that over-

lapping parts are aligned. On the other hand, in two point clouds that have

minimal overlapping, most parts of both clouds will not be aligned with any

point. In this case, a correct transformation between the clouds places them

almost apart from each other. In this case, measuring the sum of absolute
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distances between these clouds produces a large result, while the error metric

produces better results when the clouds are incorrectly pushed together and

their points are by average closer to each other. The algorithm that uses such

metrics favours the incorrect transformation since it minimizes the error met-

ric. In figure 3.2b, we can see an example of how such algorithms push clouds

together to minimize the error metric.

In the following sections we will have a close look at some of the well-established

registration algorithms:

3.1 ICP

The ICP (Iterative Closest Point) algorithm was originally introduced by Chen and

Medioni [12] and Besl and McKay [5], which is easy to understand and implement.

In its basic form, ICP aims to minimize the sum of squared distances between corre-

sponding point pairs in the two point clouds. ICP consists of two core steps:

1. Corresponding Pair Detection and Rejection: The ICP algorithm starts from

an initial pose. For every point in the source point cloud, the corresponding

pair is detected as the closest point from the target cloud based on Euclidean

distance. This step is the most computationally complex part of the algorithm

that consumes most time. Nearest Neighbour Search methods such as Kdtree

[4] can be applied to speed up the process.

A large number of false corresponding pairs can greatly affect the result of the

registration, hence it is important to reject pairs that might not be representa-
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(a) The views of the input point cloud pair

(b) Registration by minimizing distance based metric using ICP [12][5]

(c) Registration using DeReEs

Figure 3.2: Registration algorithms that minimize distance based metrics between all

points are prone to point clouds with noticeable non-overlapping sections.
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tive of the same elements. A simple rejection approach widely used is to reject

any pairs that have a distance higher than a certain threshold. Note that with

this correspondence detection and rejection approach, we are assuming that

points that have a large distance from each other have a lower possibility of

being corresponding pairs, compared to points that are placed closest to each

other. This introduces the core dependency of the ICP algorithm to a good

initial pose as explained earlier.

2. Transformation: After corresponding pair detection and rejection, a rigid trans-

formation can be easily estimated in a way that best minimizes the sum of

squared distances between the remaining corresponding pairs. Finding such

transformation is explained in the paper by Besl and McKay [5].

These two steps are performed iteratively so that the point clouds converge to the

solution pose, until a certain criteria is met. The criteria is usually set as reaching

a maximum number of iterations, or when the most recent proposed transformation

has an insignificant effect which is indicated by a threshold.

The ICP algorithm is well suited for registration of 3D point clouds with minimal

transformation distances or good initial poses. For example in scenarios where the

depth camera is capturing a scene with high frame-rates while the camera is moving

slowly (such as in hand-held 3D scanners), the transformation between consecutive

frames is minimal.

The performance of the ICP algorithm with large point clouds is extremely slow,

but after applying down sampling, real-time performance can be easily achieved with

5-10k points per cloud which is often enough for fine alignment, as shown in our
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experiments in Chapter 5.

The two main problems with the ICP algorithm, in the context of our application,

are the initial pose and partially overlapping clouds. As mentioned earlier, the ICP

algorithms assumes that point pairs which are closest to each other are true corre-

sponding pairs, or a closest pair would guide the points in the source cloud to their

true corresponding pairs in the target cloud iteratively. This assumption does not

hold true in many real world situations.

The metric used for ICP is the sum of squared distances which is prone to local

optimums existing in between the initial pose and the ideal pose. In the case of point

clouds with minimal overlapping, the ICP algorithm fails to register clouds. Even

with a good initial pose, the ICP algorithm finds corresponding pairs for points that

basically do not have any corresponding points in the other cloud. Based on this

false correspondence, the points on parts of the source cloud that are exclusive to the

source cloud are pushed to be placed near the points of the target cloud, to minimize

the sum of squared distance error metric.

Setting a threshold for rejecting far corresponding pairs can initially help to reject

exclusive points of the clouds in the pair matching process, but after a number of

iterations, those points will slowly converge toward the other cloud and will be in-

cluded in the process again. Figure 3.2 illustrates two point clouds of a real scene used

in our experiments with a correct transformation found by our algorithm, and the

transformation proposed by ICP. Notice that the error metric that ICP uses would

naturally report a more favourable error measurement for the incorrect ICP solution,

compared to the correct solution which produces very large squared distances.
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While these seem like extreme examples with the overlapping and the initial pose

problem, based on our experiments it happens quite often in indoor environments.

Point clouds of indoor scenes include large surfaces such as walls, floors and ceilings.

The problem with such flat surfaces is that from the ICP’s perspective, flat surfaces are

identical. In other words, the error measurement generated from transforming surface

A incorrectly over surface B is a small error since both surface A and B are flat and

match together easily. At the same time, note that surfaces such as walls contribute

most of the points that exist in the cloud. The contribution of this majority of points

to the error metric overcomes the contribution of the smaller portion of points which

represents smaller features and objects in the scene. This leads to the existence of

numerous local optimums in indoor scenarios, which the ICP algorithm falls into in

case of a non-ideal initial pose.

To improve the ICP algorithm, numerous extensions and variants have been in-

troduced, which mostly aim at improving individual steps of the algorithm. We will

overview some of these alternatives in the following section.

3.2 ICP Variants

Numerous variants and extensions to the ICP algorithm have been proposed, some

of which are surveyed in [52] as well as in [37]. These variants are classified into 5

categories based on the targeted component of the ICP algorithm that they aim to

improve. We briefly discuss proposed variants for each category:
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3.2.1 Selection

This component of the ICP algorithm selects the points from the point cloud that are

passed to the ICP algorithm. Originally in the work by Besl [5], all points of the point

cloud are passed to the algorithm, regardless of their distance. In a work by [64], to

prevent non-overlapping parts of the clouds to cause misalignment two criterion are

applied to the points that contribute to the proposed transformation and error metric

at each iteration: 1) points that are too far apart and 2) points that are positioned

on the boundaries of the mesh are not included in the calculations.

Both [64] and [40] suggest an iterative approach to ICP itself: performing the

ICP in iterations with different amounts of input points and details to fine tune the

registration over time. By starting from small amounts of input points which represent

the overall structure of the scene, the algorithm can quickly estimate transformations

close to the final solution, after which, a larger number of input points which represent

details of the scene, helps the algorithm to estimate a better alignment.

With colour or intensity data, another option would be to select points where the

colour or intensity values change drastically to include corners and edges into the

selection [68]. Likewise, with point clouds that include normal vectors for the points,

or after normal vector estimation for the point cloud, points can be selected in a way

that preserves the distribution of normal vectors [52] or in a way that points with

drastic normal vector changes are preferred to preserve features in the scene.
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3.2.2 Matching

In the original work by Besl [5], the correspondence detection between the points

works by selecting the closest point in the other point cloud as the corresponding

pair. Chen and Medioni [12] suggest normal projection or normal shooting: for a

source point, the corresponding pair is the point in the other cloud that intersects

with the source point’s normal vector. Another approach would be projecting the

source point into the destination cloud based on the destination cloud’s camera point

of view [7][47]. With any of these methods, assessment of the compatibility of the

source point and the proposed target point have been explored using the colour and

normal vector information [26][50].

The algorithms that use a variant of projection are prone to very large transfor-

mation distances where the projection might not produce an accurate result or any

result at all. On the other hand, projection methods are less prone to measurement

errors since they do not work based on distance, hence they converge to the solution

faster [52].

3.2.3 Weighing

One approach to decrease the effect of false corresponding pairs on the transformation

estimation is to weigh matches based on our assumed “quality” of the match, and

to take the weighing into account for transformation estimation. The original ICP

proposed by Besl can be considered as a weighted matching with constant weighs for

all matches. Godin [26] proposes lower weighs for pairs with larger distances. He also

proposed using the colour distance for weighing and weighing based on the difference
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of normal vectors.

3.2.4 Correspondence Rejection

Similar to the selection and weighing component of the ICP algorithm, correspon-

dence rejection tries to minimize the false correspondences that cause errors in the

transformation estimation. As mentioned earlier, pair rejection based on a distance

threshold and their placement over the boundaries are two adopted methods. Another

method is to reject a percentage of pairs based on the metric used for correspondence

such as the distance [50] or to reject pairs that are not close to the standard deviation

[40].

A more sophisticated but time consuming approach is to reject pairs that do not

have the same consistency with their neighbours [18]. In other words, if the placement

of source point relative to its neighbours is different than the placement of its target

point with its neighbours, the chances are that these two points represents different

parts of the scene or errors in depth measurement exists.

3.2.5 Error Metric Minimization

Originally, the sum of squared distances was proposed as the error metric for the

ICP algorithm. Colour information can also contribute to the error metric. Chen

[12] suggests a point to plane error metric: sum of squared distances from source

points to the surface of the target point. Other than the metric itself, there are also

different mathematical approaches to formulate the process of minimizing the error

metric. Some of these approaches are surveyed in [20].
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3.3 3D-NDT

NDT (Normal Distributions Transform) was first used by Biber and Strasser [6] for

2D registration and was extended to 3D registration by Magnusson[37]. In his work,

Magnusson explains the shortcomings of using point clouds: 1) lack of surface char-

acteristics such as orientation or smoothness, 2) when extracted from sensors, point

clouds have unnecessarily large number of points on surfaces close to the sensor and

much less information for further surfaces.

Instead, Magnusson suggests a surface representation approach: instead of using

a point cloud, the model is transformed into a smooth surface representation. This

representation consists of a set of local Probability Density Functions (PDFs) which

describe different sections of the surface. This is done by dividing the model into

a grid of cells (cube for 3D, square for 2D) and computing the Probability Density

Function for each cell. This function describes the likelihood of the existence of a

point in a certain location of that cell. The PDF function is a piecewise smooth

representation of the surface. Hence, it can be used to extract its derivatives. The

derivatives help derive other data such as the orientation and general smoothness of

the surface.

After converting the target cloud into the surface representation, the registration

works based on finding a transformation that maximizes the PDF function results,

with the points of the transformed source cloud as input. In other words, the registra-

tion aims at maximizing the probability that the source point exists at the location

where it is transformed into, based on the probability functions produced by the

target cloud.
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The PDF function uses normal distribution; the output of the function is de-

termined by all points in the cell. Consequently, it will blur features that are small

compared to the cell. Overly large cell sizes will cause the algorithm to neglect details

of the model. In other words, large cells lead to less detailed registration. Further-

more, a cell only contributes to the registration of points within itself. Overly small

cell sizes will cause the algorithm to fail if the initial pose of the models are not close

to the solution. Hence, choosing the right cell size is a challenge in 3D-NDT.

Magnusson explains many extensions to the 3D-NDT algorithm that aim to cover

its limitations, especially with cell sizes. Three of these extensions are described

below:

• Iterative: a straight-forward option would be to perform 3D-NDT with different

cell sizes, starting from large sizes then small ones. The initial large cell sizes

allows the algorithm to converge to a good initial pose, with successive small

cells fine-tuning the transformation.

• Octrees: The structure of the cells is created using Octrees [33]. The algorithm

starts by fixed cells, with each cell being the root of an Octree data structure.

Each node of an Octree contains 8 children. The space covered by the root node

is split between the 8 children. Then the same is applied to the children nodes

recursively, until the leaf nodes contain points less than a certain threshold.

The search for transformation can then be executed from the root level to the

leafs in an iterative approach.

• Clustering: using a clustering approach such as k-means, the point cloud can

be divided into clusters of points. Each cluster refers to one cell, which causes

48



the cell size to be adaptive to the cluster size.

Based on [37], 3D-NDT performs better than ICP in terms of accuracy and with

large transformation distance for underground mining environments (the motivation

and application behind 3D-NDT), but it is not suited for real-time applications, as

registration of each frame pair requires more than 1 second to complete.

3.4 Feature-Based Registration

Feature-based registration on 2D images can be used in most of the commercial depth-

sensing cameras as they incorporate a RGB sensor and provide RGB frames of the

scene as well as the depth frames. Feature-based registration works on the basis that

RGB feature detection and matching can be used to find corresponding points in

the two images, which then can be translated to the points in the 3D point clouds.

Different approaches can be then implemented to use this correspondence information

for estimating a transformation. Scale Invariant Feature Transform (SIFT [36]) or

Speeded Up Robust Features (SURF [3]) algorithms are used with the majority of

feature-based registration techniques.

There are some existing challenges with feature-based registration methods:

1. False Correspondence: In the ICP algorithm each point pair in the clouds can

be used to create a correspondence. With clouds of about 307200 points, the

number of corresponding pairs is very large. Compared to the ICP, the corre-

spondence accuracy is much higher with feature-based methods, but the number

of corresponding pairs is much less. Hence, a small number of false correspond-
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ing pairs can easily affect the whole set and create significant errors in the

transformation.

2. Dynamic or Repetitive Scene Structure: The majority of the features are de-

tected around colour variations such as edges or colourful objects. In dynamic

scenes where an object might move between the times that the two frames are

taken, the corresponding features that refer to that object are incorrectly rep-

resenting the transformation between the point clouds. As an example, imagine

an extreme case where the two frames are taken from the exact same location,

but an influential object in the scene is rotated upside down. The transfor-

mation based on the features of that object will indicate a 180 degree rotation

for the transformation, while no transformation is needed at all. The same

problem exists with scenes that include similar objects in the scene, which is

the case with many man made environments such as buildings and offices that

include elements like bricks, panels, windows and furniture which are created

identically. In this scenario, the feature matching algorithm matches features

that belong to different objects in the scene, such as identical edges of numerous

identical chairs in a classroom.

3. Speed: Depending on the implementation of the feature detection and matching

algorithms, the performance of the method might not be suitable for real-time

applications, as reported in [30]. Also, other than feature detection and match-

ing, the steps required after correspondence detection add to the execution time

of the algorithm.

4. Non-Overlapping Point Clouds: In some feature-based registration methods
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such as [30], the correspondence results are used to generate a coarse alignment,

which is then used as a good initial pose for other registration algorithms such as

ICP to find a finer transformation. The main problem with registration pipelines

that finish by performing ICP for fine-tuning the results is that they contain

the shortcomings of the ICP algorithm. As discussed before, this includes the

problem with non-overlapping point clouds which causes the transformation

estimation to fail even with a relatively good transformation.

Considering the first two challenges, it is necessary for feature-based registration

techniques to incorporate a robust method for rejecting false feature pairs. RANSAC

[22] is often used, as seen in RGBD-ICP by Henry et al. [30]. RGBD-ICP uses image-

based feature detection algorithms with true pair detection for coarse registration and

combines it with the ICP algorithm for further refinement of the transformation. This

work successfully addresses the Initial Pose problem with the ICP algorithm, however

by using ICP it inherits ICP’s weakness against partially overlapping 3D images.

In the case of a large non-overlapping set of images, the first stage of the algorithm

provides the ICP algorithm with a good estimate of the solution, but ICP tends to

move away from this solution by pushing the non-overlapping parts of the images

together to minimize the error. In other words, not only incorporating the ICP

algorithm in such scenarios does not contribute to the refinement of the alignment, it

renders it useless by moving away from the pose. In order to achieve fine alignment,

the ICP algorithm needs fine details; hence down sampling is not performed rigorously

so that the down sampled clouds would contain a fairly large number of points in order

to preserve scene details. Processing large number of points with the ICP algorithm
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adds a significant performance cost to the algorithm (500ms per frame).

While our solution is a feature-based registration method, we aim to address all

the aforementioned issues. The details of the proposed algorithm are discussed in the

next chapter.

3.5 Datasets

A list of many existing RGBD datasets is available at [21]. Following is an overview

of the registration specific datasets and why they were not fit for our experiments:

• TUM Benchmark Dataset [60]: the conditions required for our experiments such

as different levels of lighting and complexity were not captured in this dataset.

Furthermore, the number of frames with ground truth information were limited.

• RGB-D Dataset 7-Scenes [25]: this dataset was published by Microsoft, but

only includes frames from 7 scenes.

• IROS 2011 Paper Kinect Dataset [49]: this dataset only includes frames from

one scene in 3 different complexity conditions.

• “When Can We Use KinectFusion for Ground Truth Acquisition?” [43]: per-

haps the most suitable of the available datasets, this dataset consists of frames

from 57 indoor environments. Unfortunately, the ground truth is generated

automatically by KinectFusion software, which employs existing registration

algorithms such as ICP. This defeats the purpose of our experiments, as we

require benchmarking Derees versus the existing algorithms.
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• DAFT Dataset [27]: this dataset only includes frames of planar scenes such as

walls or floors.

• ICL-NUIM Dataset [28]: this dataset only includes 8 sequences of frames from

2 environments.

• “Automatic Registration of RGB-D Scans via Salient Directions” [70]: this

dataset includes images from long range laser scans which does not conform to

our application which applies to indoor short range environments and consumer

cameras.

• Stanford 3D Scene Dataset [71]: this dataset only includes frames from 6 scenes.

Ultimately, we opted for creating our own dataset as the existing datasets were

either limited in the number of images, or did not contain the expected variety of

conditions required for the different types of experiments that we envisioned.
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Chapter 4

DeReEs

In this chapter we focus on the registration technique that we have proposed, which

is referred to as DeReEs, short for the 3 main steps of the registration pipeline:

Detection, Rejection, Estimation.

4.1 Registration Pipeline

Derees operates within 3 main steps which are explained further below: correspon-

dence detection based on 2D feature detection and matching, false corresponding pair

rejection and fine transformation estimation.

The pipeline of the registration method we propose is depicted in Figure 4.1. The

inputs of the Derees algorithm are the two point clouds (or depth frames for less

memory consumption) and their respective RGB information, captured from cameras

placed at different positions which share a certain portion of the scene. The input

can be generated in real time from any RGB capable 3D camera such as Microsoft

Kinect. The output of the algorithm is a 4×4 transformation matrix that transforms
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Figure 4.1: DeReEs registration pipeline consists of 3 main steps: correspondence

detection, false correspondence rejection and transformation estimation.
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the source cloud to the coordinates of the target cloud, where the source is the input

from the left camera and the target is the right camera, although this can also be the

other way around.

4.1.1 Step 1: Corresponding Pair Detection

The aim of this step is to generate 3D corresponding pairs to be used as a base

for transformation estimation. 2D feature detection algorithms are used to extract

features from the RGB information. Depending on the algorithm used, these fea-

tures correspond to corners, edges or other visual features in the image. Feature

descriptors are extracted and features from each image are matched together to de-

rive corresponding feature pairs. The output of the feature detection and matching

algorithms is a set of point pairs, with each point of the pair belonging to one of the

images, and it is estimated that the points in the pair are visually corresponding to

each other. This is described by two arrays of points known as features, defined by

their 2D position in the RGB image and feature descriptor, as well as a matching

data structure which indicates which point in one image relates to which point in the

other image. Multiple algorithms might be executed and results can be aggregated

for a potentially more accurate alignment in exchange of speed.

3D coordinates of the corresponding feature pairs are calculated based on their

position in the 2D image and their corresponding values in the depth channel. In the

case of working with point clouds, an easier solution to extract the 3D coordinates

of the feature pairs is to look up the point cloud’s point array, accessing the point in

the point cloud that represents the same feature pixel in the RGB image. The point
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data structure will contain its 3D coordinates. Assuming that the image and point

cloud have exactly the same size and order in storing point information, this can be

as easy as accessing the point cloud array at the same index that the feature pixel

uses in the image’s pixel array; which was the case in our implementation, where we

use PCLs PointCloud class for storing the point cloud [53] and OpenCVs Mat class

for storing the image [9].

In the implementation of our algorithm, we can use either OpenCV’s SURF or

ORB RGB feature detection algorithms for determining the initial correspondence

and then perform brute force feature matching to find pairs among the discovered

features between the two images. Although we tested both SURF and ORB, we

opted to use SURF for the experiments since it provided a larger number of feature

pairs compared to ORB and performed more consistently across different scenes. The

time complexity for SURF and ORB algorithms without parallelization is O(W ×H)

with W and H representing the width and height of the images. The complexity of

brute force feature matching without parallelization is O(N2) with N representing

the number of features extracted by feature detectors. The GPU implementations of

SURF and ORB feature detection algorithms, as well as the GPU implementation

of the brute force feature matching algorithm have been used in this project, thus

decreasing the time complexity significantly.

Matching algorithms provide a correspondence score for each pair matching which

we used to select only the top 10% to 20% of the feature pairs (usually between 100

to 500 pairs after feature matching depending on the images). Figure 4.2 shows the

results from feature detection and matching algorithms for one of the scenes.

Considering that the depth map from depth sensing cameras is incomplete com-
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(a) SURF feature detector

(b) ORB feature detector

Figure 4.2: The resulting corresponding pairs from performing brute force feature

matching on features detected by (a) the SURF and (b) ORB feature detectors.
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(a) RGB frame (b) Depth frame

Figure 4.3: Point clouds do not include information for all the points present in the

RGB frame. The black parts in (b) represent the missing parts of the depth map due

to reflective surfaces and cropped edges.

pared to the RGB information, a noticeable number of feature pairs are lost at this

step (10%-40%). Missing depth information mainly occurs for two reasons:

• Depending on the type of depth camera, depth values may not be present for

shiny surfaces, very dark objects or light sources.

• The RGB sensor and the depth sensor are located slightly apart from each other

in the depth sensing camera. Hence, depth information may not be available

for parts of the RGB information, particularly around the vertical edges of the

depth map.

Figure 4.3 depicts the RGB image, depth frame and the produced point cloud of

a scene. The missing parts are visualized as black. Other than the occluded parts

(e.g. behind the box), it can be noted that the depth frame and consequently the
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point cloud are missing parts of the scene in its borders, as well as on some of the

reflective surfaces such as the floor.

The output of this step is a data set of feature pairs described by their 3D co-

ordinates. The number of pairs in the data set is denoted as F throughout this

chapter.

4.1.2 Step 2: False Corresponding Pair Rejection

Not all the pairs from the previous step are true corresponding pairs. False corre-

sponding pair are formed when the detection and matching algorithms have matched

two points that do not represent the same or corresponding point in the real world.

With feature-based registration methods the number of corresponding pairs is rel-

atively low (hundreds or thousands of pairs) compared to other methods [37] such

as ICP or 3D-NDT which consider all points of the point clouds as potential pairs

(300000 pairs for VGA images). Consequently, even a small number of false pairs will

degrade the alignment significantly. The aim of this step is to detect all false pairs

and remove them from the data set.

To detect such pairs, we follow this approach: assuming we know a roughly suc-

cessful transformation, this transformation can be applied to the coordinates of the

features in the source cloud. After the transformation, the points of a true feature

pair are placed closely together, while points of a false feature pair will have relatively

further distance from each other. Considering this, only a rough transformation es-

timation is required to detect and reject false feature pairs. Notice that in 3D space,

only 3 corresponding pairs are required to estimate a transformation. In this case,
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if 3 feature pairs were found to be true pairs, we can estimate a first approximation

to map them, which we refer to as the “coarse transformation”, and detect the false

pairs afterward.

For this purpose, 3 pairs can be randomly selected from the data set to be con-

sidered as the true pairs; but the reliability of this random selection is determined by

the ratio of true and false pairs, which we refer to as α.

α =
TrueCorrespondingFeaturePairs

AllCorrespondingFeaturePairs
(4.1)

Considering that α is the ratio of true corresponding feature pairs to all pairs,

the probability of selecting one true pair randomly is α. The selection of 3 true pairs

randomly from the set in one try requires 3 consecutive successful true selections,

with no false selection in between. The probability of such sequence of events is α3.

With scenes where α = 0.5 the chances of finding a correct coarse transformation

would be of only 12.5%.

We assume that by repeating this random selection for enough times, 3 true feature

pairs will be eventually selected with high certainty. While the probability of missing 3

true features with one try is 1−α3, if the selection is repeated n times, the probability

that none of the selections consist of 3 true feature pairs, Pmiss, is (1 − α3)n. The

parameter n can be selected in a way that Pmiss falls below the desired certainty

threshold, where n is selected based on scene complexity as described below.

Pmiss = (1− α3)n (4.2)
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n = log1−α3 Pmiss (4.3)

With α = 0.5 and 69 repetitions, the probability that no 3 true feature pairs are

randomly selected falls below 0.01%.

This can be considered similar to a bare-bone version of RANSAC [22] outlier

detection approach. In the RANSAC algorithm, the data points that are initially

selected randomly are often used to extend the selection to all data points, based on

a function that computes how queried data points match the accepted data points.

Similar to our case, we look for a selection of 3 correct data points and those 3 points

basically determine the outlier data points that we are looking to reject.

Any of the randomly selected 3 true pairs can be used to generate the coarse

transformation we require. The remaining problem is: the coarse transformation is

required for detecting true and false pairs, while we need 3 true pairs to complete

this task. We need a way to determine which of the random selections contain 3 true

pairs, in order to derive the coarse transformation from that selection. A score or

error metric is required to differentiate the good selection (a selection with 3 true

corresponding pairs) from an incorrect one.

4.1.2.1 Transformation Evaluation Metric

The correctness of a random selection can be assessed based on the correctness of

the transformation it produces. If the transformation generated by 3 corresponding

pairs has signs of being close to the correct transformation, the 3 selected pairs may

be true pairs. Conventionally, the correctness of a transformation is determined by

applying the transformation to the point clouds and then measuring metrics such

62



as Sum of Absolute Distances or Squared Sum of Distances between corresponding

pairs, defined as closest points in two clouds or through other methods [52]. This

is inaccurate for the similar reasons mentioned before: non-overlapping areas of two

clouds will cause the distance metric to increase while the clouds might be aligned

correctly, since points in mutually exclusive parts of the clouds have no neighbouring

points in the other cloud. In other words, an incorrect alignment that pushes the

non-overlapping parts together may produce a better value for the distance metric.

It is also time consuming since it applies the transformation on all or most points in

the clouds.

The proposed metric for evaluating the correctness of the transformation in this

work is a scoring metric that calculates the number of all features for which the dis-

tance to their respective points in the other point cloud is less than a certain distance

threshold (dT ) after applying the proposed transformation only on the 3D feature

pairs extracted from previous step. As mentioned before, a correct transformation

will transform the point cloud in a way that truly corresponding pairs will be placed

in close proximity, while false apparent pairs will have noticeable distances defined

with a threshold value (dT ). Our metric counts the number of true pairs by taking

advantage of this observation. After applying the proposed transformation from a ran-

dom selection of 3 pairs on all pairs, the number of pairs that have smaller distance

than the threshold are counted as the score for that random selection. The proposed

transformation from 3 pairs is calculated by translating and rotating 3 points to their

respective matches, based on their centre points and angular differences.

Note that due to the noise in the depth data and inaccuracy in the depth map,

camera resolution and inaccuracy of the feature detection algorithm, even true pairs
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would not have identical coordinates after the transformation is applied. The need for

using a distance threshold in the scoring process arises from this issue. The distance

threshold is selected in a way that these inaccuracies along with the inaccuracy of a

coarse transformation does not cause too many true pairs to be rejected.

It is important to note that any set of 3 true pairs generates a coarse transforma-

tion which is very similar to transformations generated by other sets of 3 true pairs, a

coarse transformation which is relatively close to the solution transformation. Unlike

true pairs, transformations between most false pairs are arbitrary and it is extremely

unlikely that an incorrect transformation results in a majority of false pairs being

placed close by. In the case of an incorrect transformation, the 3 feature pairs will

have relatively small distances to their pairs and most true pairs, as well as the ma-

jority of false pairs, will have noticeably large distances, so the transformation that

minimizes the total amount of pairs with distances under the threshold is most likely

to be the true transformation which we set as the coarse transformation produced in

Step 2.

The following is the process followed to obtain the coarse transformation:

1. Random selection: 3 feature pairs from the set generated in Step 1 are ran-

domly selected - (A1, B1, C1) from the source cloud and their respective pairs

(A2, B2, C2) from the target cloud.

2. Transformation estimation: transformation T is estimated in way that T (A1, B1, C1)

is equal/close to (A2, B2, C2).

3. Transformation: T is applied to all the feature pairs in the data set.
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4. Scoring: the pairs for which their distance is less than the threshold are counted

as the score for transformation T .

5. Repeat steps 1 to 4 n times.

6. The transformation with the best score is selected as coarse transformation (Tc).

Finally, the coarse transformation obtained is applied to all feature pairs and all

the pairs that have a greater distance than the distance threshold dT are removed

from the set. In our experiments it is observed that 5% to 30% of the pairs remain at

this step, depending on the difficulty of the scene for feature detection and matching

algorithms.

This step has a complexity of O(n × F ), where n and F respectively represent

the number of iterations and the number of feature pairs obtained from Step 1. The

number of iterations is selected between 20 to 300. Through empirical observation,

we have found that values ranging from 150 for simple scenes and values closer to 200

for complex scenes produce optimal results.

4.1.3 Step 3: Fine Transformation Estimation

The coarse transformation calculated in the previous step is the result of a trans-

formation estimated by using only 3 true pairs. By considering all true pairs in

transformation estimation, a finer transformation can be achieved, since averaging

the results from all pairs can help decrease the effect of measurement errors from 3

pairs. The remaining feature pairs from the previous step are used to estimate a finer

transformation which best transforms the features from one cloud to their correspond-

ing features by minimizing the least squares error between the two sets. Performing
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this with what we expect to be only the true pairs reduces the risk that false feature

pairs affect the overall accuracy. Minimizing the least squares is performed by an

algorithm based on singular value decomposition (SVD) proposed by Arun et al. [2]

which has a linear time complexity. We used PCL’s implementation of this algorithm

in our project, with equal weights for all corresponding pairs.

4.2 Alternative Approaches Explored and Proposed

Improvements

Different alternatives have been tried at each step of the algorithm, which are dis-

cussed in this section. Furthermore, possible improvements that have not been applied

during the course of this research are proposed. Time constraints prevented us from

examining these possible improvements on the algorithm during the research period.

These subjects are categorized based on the components of the algorithm that they

would be applied to:

4.2.1 Correspondence Detection

4.2.1.1 Feature Detection on the Depth Image

Feature detection on the depth image was also tried, with little success. As mentioned

earlier, the depth images include numerous missing pieces of information. These miss-

ing pieces of the dataset must be replaced with some value for the feature detector.

The two choices are either 0 or the maximum acceptable value, respectively repre-

senting the minimum distance or an infinitely far distance. In both cases, the point
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Figure 4.4: Corresponding pairs from the SURF and ORB feature detectors and brute

force matching algorithms.

is represented as black or white in the depth image. In our implementation we chose

0 for missing information.

This sudden change in colour to black (or white) causes the feature detector to

treat these elements as edges of objects. Since the missing pieces are vastly different

between the two images, the detected features around the missing information do not

correspondence to each other between the 3D image pair. Furthermore, many of the

features will be selected on these elements with missing depth information, which

prevents us from calculating the 3D coordinate for such pairs, rendering them useless

(see Figure 4.4).

4.2.1.2 Edge Detection

Edge line detection has also been tried for this purpose (see Figure 4.5) with little

success due to low correspondence between detected lines. There are a number of

problems with this method:
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1. The edges detected between the two image pairs have different lengths, making

it difficult to determine a point to point correspondence for transformation

estimation.

2. A single edge detected in two of the images does not necessarily correspond to

the same object. Assume the edge detected between a background and fore-

ground object. In one point cloud, the edge might be placed over the background

object, while in the other point cloud the corresponding edge might be placed

over the foreground object. This causes the corresponding points in such edge

to have extremely different positions in 3D coordinates.

3. The low number of edges makes the algorithm highly prone to incorrect edge

matching.

4.2.1.3 Object Matching Using Colour Information

We also tried the possibility of detecting an object in both image pairs using colour

information. We assumed that in both point clouds, an object with a unique colour

exists, which can help in determining a coarse transformation estimation or corre-

spondence. We filtered the pixels based on different colour ranges and tried fitting

the remaining pixels into blobs. Unfortunately, the results are highly dependent on

the scene conditions. Low light environment causes the RGB images to have low

colour quality. The high level of noise causes the different colour ranges to exist all

over the image, making it hard to robustly determine a blob that represents an object.

A possible improvement which we have not tried is to use multiple RGB feature

detectors (e.g. SURF and ORB and SIFT) in parallel and accumulate their results,
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(a) Original image pair

(b) The image pair after applying canny edge detection

(c) The image pair after applying Probabilistic Hough line transform over the canny edge

detection result

Figure 4.5: Probabilistic Hough line transform over Canny edge detection.
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in return for lower speed.

4.2.2 False Corresponding Pair Rejection

Different scoring metrics were tried for the transformation evaluation component of

the algorithm: Triangle Conformity: having selected 3 random pairs from the data

set, the quality of the selection can be determined by how the 3 pairs conform to each

other, independent of the other pairs. Assuming that the 3 pairs are true pairs, the

triangular properties (angles and vector sizes) created by the 3 points in the source

point cloud are consistent with the triangular properties of their pairs in the target

point cloud.

We took advantage of this fact and calculated an error based on how different the

two triangles are, considering the sum of absolute vector length differences. P1 and

P2 represents the perimeters of the triangles formed by the 3 points in target and

source point clouds:

Metric1 = |P1 − P2| (4.4)

After executing the random 3 pair selections for n iterations, the set with the

least error value would be selected to determine the coarse transformation. The

problem with the previous metric is that in the case of a false random selection with

very small vector lengths (small triangle) and a true random selection with very large

vector length (large triangle), the metric would favour the false random selection. The

vector lengths differences between two large triangles are potentially larger than vector
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lengths differences of two minuscule triangles regardless of how well they conform. To

fix this problem, we scaled the error metric based on the triangle size in a way that

the size of the triangle would impact the error metric.

Metric2 =
|P1 − P2|

max(P1, P2)
(4.5)

While the previous metric performed well in most cases, it would become prob-

lematic when the 3 selected points were linear or closely linear even when they are

true pairs. In case the points can be fit on a straight line, the transformation es-

timation fails due to not being able to determine a correct rotation. As mentioned

before, even the true corresponding pairs are not ideally corresponding due to feature

detector accuracy or depth sensor noise. When the 3 pairs are placed in a way that

they closely fit a straight line, a very small location error on the position of the points

causes a significant rotation error in the transformation estimation.

To avoid this, we tweak the metric in a way that it favours the triangles that show

equiangular properties. We determine how well the 3 points are equiangular by using

the sine of their smallest angle. In the formula below, A represents the array that

contains the angle sizes between points in both points clouds.

Metric3 =
|P1 − P2|

max(P1, P2)× sin(min(Ai))
(4.6)

In this metric, the sine of the smallest angle from linear points is close to 0,

causing the error metric to increase toward infinity. On the other hand, the sine of
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the smallest angle for perfectly equiangular 3 points would be sin(60) =
√
3
2
, causing

the error metric to increase slightly.

A common issue with all of these metrics proposed during our research is the

problem of the position error: While two sets of 3 3D points might have a small

error metric, showing that they both contain true pairs, one of them might perform

significantly better due to less position error and how the position error transforms

the point cloud. So, it becomes important to consider other points in the cloud rather

than just the 3 points, which led us to choosing our current metric: a scoring based

on the number of all corresponding pairs that are placed closely after applying the

transformation estimated based on the 3 pairs.

A possible improvement to the current process of the algorithm would be to mix

the current scoring metric with the triangle conformity error metric: depending on

the ratio of true feature pairs, a large number of incorrect random selections can

be rejected using the triangular properties before going ahead with calculating the

scoring metric for them. Considering that the scoring metric requires transformation

of all feature pairs in the cloud and calculating their distances for numerous iterations,

this can reduce the execution time of the algorithm significantly.

4.2.3 Transformation Estimation

Initially, we only used the transformation from the 3 true pairs with the best score as

the final transformation to save execution time. Considering that this transformation

aligns many true pairs in a way that they are placed close together, the transformation

would be very close to the ideal solution. The problem is that the scoring is discrete,
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hence many of the sets of 3 pairs have the exact same score: the number of all true

features pairs; while based on position error their transformations are not the same.

While we opted to perform a rigid transformation between the pairs that are

counted by the scoring (the true pairs), possible improvements exist: the scoring can

be converted to a non-discrete metric by taking into account the distance of the pairs

that are close together. In other words, rather than the number of pairs, the scoring

metric would measure the distance of pairs that fall below the threshold and affect

the score on a weighted basis.

We have also experimented with using ICP for fine transformation estimation. The

3 pairs from the previous step would indicate a coarse transformation, then the ICP

is used to fine-tune the alignment. In cases of large non-overlapping sections, the ICP

algorithm breaks the alignment. In other cases, the results are similar to the rigid

transformation estimation between the remaining true pairs, but the performance

time is significantly worse due to the large number of input data that is required for

a fine-tuned ICP algorithm.

One possible solution to the non-overlapping problem might be to crop out the

non-overlapping parts of the clouds based on the alignment determined by the true

pairs, then perform the ICP algorithm on the remaining points of the clouds for

further fine-tuning.

An improvement to the current solution is to consider the feature matching confi-

dence metrics in the final rigid transformation estimation. The matching confidence

or the matching score is assigned to two features from the two images by the feature

matching algorithm. This metric indicates the confidence of the algorithm in identi-

fying the two features as a pair. In other words, pairs with better matching scores are
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assumed to have a higher chance of being true pairs compared to feature pairs with

lower scores. This metric is calculated by different methods depending on the feature

descriptors used (different methods surveyed in [72]). For example, the metric can be

calculated by assessing the similarities of the feature descriptors of the two features

by using the Euclidean or Hamming distance of the feature descriptor matrices. In

our current solution, all remaining true features in the final step of the algorithm have

the same weight in determining the final transformation. Assuming that the feature

pairs with better confidence evaluation have less position errors, corresponding pairs

in the final step can be assigned weights based on their matching confidence from

step 1 for a more accurate transformation, similar to weighted variants of ICP (see

Section 3.2).
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Chapter 5

Evaluation

In this chapter, we focus on the evaluation on our proposed algorithm against other

registration algorithms. First, we introduce our registration data set which can be

used by the research community for experimentation with registration. We will then

describe the implementation and configurations used for our experiments. Experimen-

tation hypotheses are presented next and then we continue to assess the performance

of our algorithm under different conditions to validate our hypotheses.

5.1 Data-Set Collection

For the purpose of experimentation, we require 1) a collection of 3D image pairs un-

der different conditions in indoor environments and 2) their known transformation

(ground truth). Existing data sets suitable for registration and pose estimation ex-

periments either lacked large number of images or were not collected with the various

conditions we required for our experiments such as different lighting, complexity, etc.

We created our own data set containing 50 sets of 3D images and their ground truth
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transformation and have made it publicly available at [56] for the research community.

Images were taken with the Microsoft Xbox 360 Kinect camera at 640 × 480

resolution. Each set contains 2 to 5 images of the same scene from different viewing

points. For each image, we recorded 3 files to encapsulate different use cases:

• A Point Cloud library file (.PCD) that contains the data structure used by

Point Cloud Library (PCL) for storing the point cloud information in memory.

This includes color and coordinate information, as well as other point cloud

properties. The file can be loaded using the PCL to create a point cloud object.

• A loss-less image file (.PNG) for the RGB information of the camera.

• A loss-less image file (.PNG) for the depth information of the camera.

The images were taken in indoor office environments under various conditions of

feature richness, transformation distance, transformation type (rotation vs. transla-

tion), lighting levels, distance to the scene, complexity, repetitiveness. Some images

also include dynamic scenes where the scene elements have changed position between

image pairs.

The ground truth transformation is estimated between the first image and the rest

of the images in each set. The ground truth is estimated by performing our algorithm

on the image pair and then manually fine tuning the alignment until misalignment

in the cloud is not visually detectable (Figure 5.1). Manual fine tuning is performed

by rotating and moving the cloud in all 6 degrees of freedom using keyboard input,

with precision of 1cm for translation and 0.5◦ for rotation. The process of manual

fine alignment is assisted by an interactive application which measures the square of
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Figure 5.1: Visualization of the registration with ground truth transformation.

distance error metric between points of an overlapping section of the cloud in real-

time as user moves the clouds. The overlapping section where the square metric is

calculated for is selected manually by the user performing the alignment. The ground

truth transformation is a 4× 4 3D transformation matrix which is saved as plain text

in the data set.

5.2 Implementation, Experimentation Environment

and Configuration

This algorithm is implemented with the help of open-source libraries and C++ pro-

gramming language. The OpenCV [9] library is used for the GPU implementation of

the SURF and ORB feature detection algorithms, as well as GPU implementation of

brute force feature matching algorithm. Point cloud I/O (file or device), visualiza-

tion and simple point cloud processes are implemented using the Point Cloud Library

(PCL) [53]. Implementations of the ICP and 3D-NDT algorithms in the PCL are
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Method Success rate (%) Errort (cm) Errorr (degree) Speed (ms)

3D-NDT 10 17.86 28.48 21063

ICP 40 17.65 10.98 42.37

RGBD-ICP NA 12.3 3.3 730

Derees 97 2.45 2.41 36.68

Table 5.1: Comparison of Derees, ICP, 3D-NDT and RGBD-ICP in terms of success

ratio, transformation error and speed.

used for comparison purposes in the following experiments.

The configuration of the machine that performed our experiments is as following:

Intel Core i7 CPU 960 @ 3.20GHz (8 cores), 12GB memory, NVIDIA Quadro K5000

graphics card (4GB memory - 1536 CUDA cores), 64-bit Ubuntu 12.04 LTS operating

system.

5.3 Experiments

5.3.1 General Comparison

Derees is compared to ICP and 3D-NDT using a data-set of 10 RGBD image pairs

with low to moderate transformation distances, each being executed 10 times for ev-

ery algorithm (100 executions in total for each algorithm). Table 5.1 outlines the

success ratio, transformation error and speed of all algorithms. Due to lack of access

to implementations or data sets of RGBD-ICP, direct benchmarking was not possible.

The RGBD-ICP values in table 5.1 represent the evaluations reported in [30]. Trans-
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formation error for each transformation is calculated as: 1) the Euclidean translation

error in the 3 axes (Errort) and the average of rotation errors around the 3 axes

(Errorr). We defined any transformation estimation with more than 0.5m error in

translation or more than 30◦ error in rotation as an unsuccessful registration as to

identify completely flawed matches; any other similar values can be used, as unsuc-

cessful registrations tend to have noticeably large errors. The error measurements in

the table represent the average of the errors only for the successful registrations, to

prevent unsuccessful registrations from skewing the error measurements.

The speed is the average execution time of all executions. For both ICP and

3D-NDT algorithms, it is essential to down-sample the 300k input from the Kinect

camera. The clouds were down-sampled to 6−7k points for ICP and 2−3k points for

3D-NDT to achieve an execution time relatively similar to what has been reported in

other publications such as [30][52][37].

Our algorithm performs at 36.68ms per frame (including the 2D feature detection

step), capable of processing RGBD images at 27fps. As seen in the table 5.1, Derees

outperforms other algorithms in all metrics. It should be noted that it is possible

to run both ICP and 3D-NDT faster by a stricter down-sampling, which in turn

decreases accuracy. A direct speed comparison with the RGBD-ICP cannot be made

due to different settings and configurations, although it is known that the majority of

the time that RGBD-ICP uses is dedicated to the ICP algorithm with dense input for

transformation refinement (500ms). It should be noted as mentioned in section 4.2.3,

we tested the RGBD-ICP approach by using ICP in the final step of the algorithm.

Unfortunately, the results indicate with no noticeable improvement on the accuracy,

and as described earlier in Section 3.1, this caused the algorithm to be prone to failure
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with image pairs that include a noticeable amount of exclusive parts (small overlap),

so we have discarded it as a viable solution for us.

5.3.2 Robustness with varying amounts of overlap

To evaluate how our algorithm performs with varying degrees of partial overlap be-

tween image pairs against other algorithms, we generated a set of overlapping images

from one scene. We did this by capturing an initial image from the scenes, then

rotating the camera by 5 degrees before taking the next image and so on. The first

image is used as the source point cloud, while consequent images are used as target

point clouds. We performed this for one indoor scene, generating 12 images for the

scene. Considering Kinect camera’s field of view of 57 degrees, the amount of overlap

between each image pair is calculated as the ratio of the overlapping portion of the

clouds with respect to the whole coverage of the two clouds based on the amount

of camera rotation r, where r is the amount of rotation from the initial pose (5◦ for

second image, 10◦ for third image, etc.).

OverlappingRatio =
57− r

57 + r
(5.1)

Table 5.2 represents the average of error measurements and the success rate for

different amounts of overlapping with different algorithms. Note that unlike the

previous experiment, the error measurements in this experiment are the average for

all executions. Figure 5.3 illustrates the success rate between the three algorithms.

Derees outperforms other algorithms by successfully registering image pairs (such

as Figure 5.2) with only 23% of overlap, compared to requiring of 70% and 83%
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(a) The original image pair.

(b) Surf feature detection and brute-force matching results on

the original image.

(c) Final registration result from DeReEs.

Figure 5.2: Successful registration of image pairs with only 23 percent overlapping

using Derees.
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Figure 5.3: Success rate of Derees, ICP and 3D-NDT under different amounts of

overlap between the image pairs of the same scene.

overlap for ICP and 3D-NDT. As expected, robustness of our algorithm deteriorates

with decreasing overlap as the feature detection and matching algorithms begin to

provide a large number of false corresponding pairs. For this experiment, RANSAC

iterations has been set to 200, while still providing a real-time solution (25fps).

5.3.3 Robustness in feature-less scenes

Texture-less surfaces and low number of detectable features in the scene greatly af-

fect the performance of the 2D feature detection algorithm. In such conditions, the

randomized selection of 3 pairs for coarse registration estimation has a lower chance

of success. Hence, the number of iterations used at this step becomes the crucial

determinant in successful registration in poor conditions, which in return affects the

speed of the algorithm.

We evaluated the accuracy and the speed of our algorithm with different number of
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Derees ICP NDT

Overlap

(%)

Et
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(de-
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Success

(%)

Et

(cm)

Er

(de-

gree)

Success

(%)

Et

(cm)

Er

(de-

gree)

Success

(%)

83 1.72 1.05 100 6.63 2.80 100 35.16 5.80 100

70 2.21 0.49 100 48.72 3.54 46 108.87 85.67 0

58 2.22 0.76 100 100.94 16.04 9 107.14 77.04 0

48 1.42 0.73 100 145.89 19.90 0 131.23 162.28 0

39 0.80 1.14 100 170.90 39.62 0 247.46 154.93 0

31 1.36 0.79 100 271.40 144.14 0 251.14 142.95 0

23 1.23 1.33 100 302.23 165.17 0 268.45 159.14 0

17 36.90 73.29 64 341.46 182.22 0 286.44 138.02 0

11 136.04 100.74 27 367.31 210.54 0 295.15 168.96 0

6.5 346.22 101.11 3 381.31 201.39 0 312.26 146.74 0

1.7 356.94 147.26 0 397.64 213.73 0 347.20 144.29 0

Table 5.2: Performance of Derees, ICP and 3D-NDT under different amounts of

overlap between the image pairs of the same scene.
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Figure 5.4: The overlapping ratio is calculated as the overlapping portion of the

clouds with respect to the whole coverage of the two clouds, based on the amount of

camera rotation r.

RANSAC iterations from 10 to 300. We performed this experiment with a feature-less

image pair against a feature-rich one (see Figure 5.5). The feature detection algorithm

has also been configured to produce less certain results in order to 1) increase the

number of detected features in the feature-less scene and 2) emphasize the effect

of RANSAC iterations in rejecting false corresponding pairs. Figure 5.6 illustrates

the effect of increasing the number of iterations on success rate and execution time

on each of these pairs. Figure 5.7 illustrates the error measurements for successful
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transformations over the number of iterations. Each data point is the average result

of 100 executions (per image pair per iteration number).

As seen in Figure 5.6, increasing the RANSAC iterations has a direct effect on

increasing the accuracy of the results, which is necessary for maintaining the reg-

istration accuracy of the feature-less scenes, although this effect is only valid to a

certain extent (about 150 iterations). With a feature-less scene and large number of

iterations, our algorithm has a similar success rate and error measurements as the

results of the general comparison (subsection 5.3.1), while still maintaining the real

time performance (14 frames per second at 150 iterations). The algorithm performs

slower compared to the General Comparison experiment in overall due to the feature

detection and matching configurations in this experiment, which results in a larger

number of feature pairs to be processed (300 to 400 pairs compared to 70 to 150).

5.3.4 Robustness in low lit environments

Lightning in the scene affects the quality of the registration in feature-based registra-

tion methods. Low lit environments cause lower image quality and less colour vari-

ance in the image. Consequently, the effectiveness of the RGB feature detection and

matching algorithms degrade. We evaluated the accuracy and speed of the algorithm

in 3 different lighting conditions (bright, dimmed and dark) with 3 different scenes

(figure 5.8). Figure 5.9 illustrates one of the scenes in 3 different lighting conditions

and how the feature detection and matching results degrade with low brightness.

We performed the experiment with different numbers of RANSAC iterations (from

10 to 200) to see how the iterations contribute to the quality of the algorithm. In
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(a) Feature-less scene

(b) Feature-rich scene

Figure 5.5: Comparing the performance of the algorithm in feature-less scenes against

feature-rich scenes.
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(b) Execution Time

Figure 5.6: Effects of increasing the number of RANSAC iterations on the success

rate and the execution time of the Derees, compared between a feature-less and a

feature-rich 3D image pair.
87



0 20 40 60 80 100 140 180 220 260 300

0
2

4
6

8
10

12

RANSAC Iterations

A
ve

ra
ge

 T
ra

ns
la

tio
n 

E
rr

or
 (

cm
) Feature−less

Feature−rich

(a) Translation Error

0 20 40 60 80 100 140 180 220 260 300

0
2

4
6

8
10

12
14

RANSAC Iterations

A
ve

ra
ge

 R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s) Feature−less
Feature−rich

(b) Rotation Error

Figure 5.7: Effects of increasing the number of RANSAC iterations on the accuracy

of Derees, compared between a feature-less and a feature-rich 3D image pair.
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Figure 5.8: Scenes used to test for the different lighting conditions (complete set

available at [56]).

this experiment, we rigorously defined unsuccessful registrations as registrations that

are 10cm off in translation in any direction or 15 degrees off in rotation. We opted

to set stricter success thresholds to emphasize the distinction between the results

of the algorithm in different conditions. The robustness, speed and accuracy of the

algorithm in each lighting condition can be compared in figure 5.10 and figure 5.11,

as well as the effect of different iterations on the results. The experiment is executed

100 times per RANSAC iteration number for each of the 9 image pairs. The results

are averaged between the 3 scenes for each lighting condition.

It can be noted that brightness does affect the accuracy of the algorithm in overall,
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(a) Bright scene

(b) Dimmed scene

(c) Dark scene

Figure 5.9: The effect of lighting on the accuracy of the feature detection and matching

algorithms.
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Figure 5.10: The effect of brightness on success rate and speed of Derees.

91



20 40 60 80 100 120 140 160 180 200

0
1

2
3

4
5

6
7

8

RANSAC Iterations

A
ve

ra
ge

 T
ra

ns
la

tio
n 

E
rr

or
 (

cm
)

Bright
Dimmed
Dark

(a) Translation Error

20 40 60 80 100 120 140 160 180 200

0
2

4
6

8
12

16
20

RANSAC Iterations

A
ve

ra
ge

 R
ot

at
io

n 
E

rr
or

 (
de

gr
ee

s)

Bright
Dimmed
Dark

(b) Rotation Error

Figure 5.11: The effect of brightness on accuracy of Derees.
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considering that the accuracy in low lit condition does not match the accuracy in well-

lit condition. Although, this can be compensated to a great extent by increasing the

number of RANSAC iterations. It is also notable that the speed of the algorithm is

slower in well-lit condition, due to processing a larger number of feature pairs.

5.3.5 Registration of scenes with repetitive patterns

Since our registration method is feature-based, it is highly dependent on the success of

the RGB feature detection and matching. Feature matching accuracy is compromised

when elements in the scene are visually similar, causing the matching algorithm to

match unrelated features of the scene together. This is especially true for human

made environments which usually contain similarly manufactured items such as tiles,

desks, etc. This negatively affects the accuracy of feature-based registration methods.

In this experiment, we evaluate the robustness of our algorithm with scenes that

contain repetitive objects and visual patterns. We executed our algorithm with dif-

ferent numbers of RANSAC iterations over 5 image pairs (Figure 5.12) with 100

iterations per image pair. In this experiment, we rigorously defined unsuccessful

registrations as registrations that are 10cm off in translation in any direction or 15

degrees off in rotation. Figure 5.13 depicts the success ratio of each of the 5 pairs,

over different numbers of iterations.

It is immediately evident that our algorithm is not reliable in scenes with repetitive

patterns. What is interesting is the different behaviours present regarding such scenes.

The algorithm performs fine in scenes number 1 and 2. In scene 3, a moderate number

of iterations (80-100) compensates the lack of accuracy. In contrast, the algorithm
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(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5

Figure 5.12: Scenes with repetitive patterns.

performs poorly in scene 4 and 5 and the number of iterations does not improve the

results noticeably.

In a closer look, while scene 2 contains 4 supposedly indistinguishable objects

specifically chosen to mislead the algorithm, the algorithm performs perfectly with

even moderate number of RANSAC iterations. From the 217 2D features in this

scene, 37% of the feature pairs are true pairs based on the best score from successful

registrations, indicating the satisfying accuracy of the feature matching algorithm.

Whereas in scene 5, only 6.8% of the feature pairs are true pairs. Looking back at

the image pairs (figure 5.12), it can be noted while all scenes do contain repetitive

patterns, the algorithm only performs poorly with scenes that contain less complexity

and less variety of colour (scenes 4 and 5), which goes back to the effect of feature-

richness of the scene on the feature detector and matcher. Figure 5.14 compares the
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Figure 5.13: The robustness of the algorithm in scenes with repetitive patterns.
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results of Canny edge detection [11] for all 5 scenes. The noticeable difference in

complexity of the last two scenes is vivid in these figures.

To further explore the effect of repetitive patterns on the success of the algorithm,

we executed the experiment with the ORB feature detector (Figure 5.15) instead of

the SURF feature detector which has been used for all other experiments. It is noticed

that the robustness does not change for the feature-less scenes, but it does affect other

scenes positively, which suggests that the accumulation of feature matching results

from multiple feature detectors might improve the robustness of the algorithm in

some cases.
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(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

(e) Scene 5

Figure 5.14: Canny edge detection results for scenes with repetitive patterns.
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Figure 5.15: The robustness of the algorithm in scenes with repetitive patterns using

the ORB feature detector.
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Chapter 6

Conclusions

6.1 Contributions

In this research, we introduced a new registration algorithm (DeReEs) based on 2D

RGB features and depth information. This technique is aimed at scenarios that

require the input of multiple depth cameras in a scene to be aligned and merged

together, reducing the burden of set up (calibration and/or manual alignment) or

misalignment in case of accidental camera displacements. It can also be used with

single depth cameras in static scenes. Our application of interest for this algorithm

is a virtual reality collaboration tool with multiple cameras setup.

For our experiments, we collected 144 images from 45 indoor scenes. The images

are taken under different conditions (lighting, overlap, etc.) to evaluate the overall

robustness of the algorithm. Our dataset is available to the research community at

[56] for comparison and experimentation with registration algorithms.

Based on our experiments, the algorithm runs in real-time (27 fps) with success
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rate of 97% under regular conditions with less than 3cm of translation error and 3

degrees of rotation error. DeReEs support transformations with 6 degrees of free-

dom and performs well with partially overlapping image pairs, supporting successful

registration of images with only 23% overlap.

Similar to other visual feature based registration techniques, this algorithm is

dependent on RGB information which is provided by some of the commercialized

depth sensing cameras such as Microsoft Kinect. This dependency threatens the

performance of the algorithm in not ideal scene conditions such as scenes with low

brightness, repetitive patterns and feature-less scenes. We experimented with each

of these situations, finding that the algorithm performs well with more conservative

configuration in return of minimal speed reduction, except for scenes that include

repetitive and feature-poor elements at the same time. Setting the false correspon-

dence rejection component of the algorithm to execute large numbers of iterations,

success rate of 90% and more can be achieved in feature-less scenes (30 fps) and low

lit environments (16 fps).

6.2 Publications

Parts of this work have been published in two scientific publications: [57] and [59].

6.3 Limitations

Inherently, the fundamental limitation of this technique is its dependency on colour

information. The execution of the algorithm requires having coloured point clouds
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and RGB enabled depth sensors which is not the case for some devices. Furthermore,

the complexity of the RGB information plays an important role in the accuracy and

robustness of the registration. For most indoor scenes, there is enough colour disparity

and complexity that the feature detector and matcher can successfully determine true

pairs with a reasonable true pair ratio. While large number of RANSAC iterations for

false pair rejection can help the algorithm compensate for low true pair ratio in low

lit, feature-less or repetitive scenes, the algorithm fails to robustly provide successful

results with relatively difficult scenes that present all these unfavoured conditions.

This places DeReEs at a disadvantage in scenarios such as autonomous robotics for

underground mines or autonomous underwater vehicles in deep water which mainly

consist of low-lit and feature-less scenes [37][32].

The other main limitation of our algorithm along with other feature-based reg-

istration methods is in scenarios where the images are taken at different times and

elements of the scene are moved between the two images. In such dynamic scenes,

if elements that contain large number of features are misplaced, feature-based reg-

istration algorithms suggest transformations that would try to align the misplaced

elements in accordance with the feature pairings. This makes this registration al-

gorithm not the best choice for robot localization in dynamic scenes which registers

images from one camera over time.

The performance of DeReEs with outdoor scenes is an unexplored matter. Depth

sensors such as Microsoft Kinect which are used in this research are designed for

indoor environments and can only estimate depth confidently for objects between

0.5 to 10 meters away. In outdoor environments where the distance of points to the

camera are far greater, it is expected for the feature pairs to have less accuracy since
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the real-world distance between points is larger than in indoor scenes. The effect of

such inaccuracy of the overall accuracy of the registration is unknown.

6.4 Possible Improvements

While the algorithm is not designed for a specific depth camera, we have only tested it

with Microsoft Xbox 360 Kinect camera. It is expected that DeReEs would perform

similarly with other short range RGBD cameras such as Creative Senz3D or Google’s

Tango project devices. It would be valuable to extend the underlying software to

support these cameras.

To further enhance the feature detector and matching results without largely

affecting the performance speed, it is possible to accumulate results from multiple

feature detection and matching algorithms; as different detection methods perform

better in different scenarios.

To enhance the performance of the algorithm in the random selection stage, it

is possible to reject many of the randomly selected pairs prior to calculating the

transformation score which is computationally complex. Based on simple conditions

or metrics such as triangular conformity between the 3 pairs (explained in details in

subsection 4.2.2), improper pairs can be rejected.

The transformation scoring metric used with our algorithm is numerically discrete

since it counts the number of closely placed pairs after the proposed transformation.

This results in multiple proposed transformations returning the same score, while

some of them might be more accurate (better coarse transformation). Converting

our metric to a non-discrete metric can further enhance the transformation scoring.
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This can be achieved by calculating the scoring metric based on the distance of

corresponding pairs for pairs which have a distance less than the distance threshold

dT after transformation. For example, multiple transformations with the same number

of accepted pairs can be further ranked based on the sum of absolute corresponding

point distances.

At the transformation estimation stage, after the final transformation based on

remaining true pairs, applying the ICP algorithm might provide more accurate re-

sults if non-overlapping portions did not exist in the scene, considering that the ICP

algorithm takes all points of the cloud into account, minimizing the errors caused

by a subset of points. To prevent the non-overlapping sections to mislead the ICP

algorithm, it is possible to apply the transformation based on remaining true pairs

and then ignore the points in non-overlapping parts and edges for the ICP refinement.

This will also limit the number of points that are passed to the ICP algorithm. In

a scenario without ICP refinement, the confidence scores from the feature detection

and matching algorithms can be used to assign weights to each corresponding pair

for a more accurate transformation estimation.

103



Bibliography

[1] Velodyne hdl-64e s2 product datasheet, velodyne lidar. http://velodynelidar.

com/lidar/products/brochure/HDL-64E\%20S2%20datasheet_2010_lowres.

pdf. Accessed: 2014-08-20.

[2] K. Arun, T. Huang, and S. Blostein. Least-squares fitting of two 3-d point

sets. Pattern Analysis and Machine Intelligence, IEEE Transactions on, PAMI-

9(5):698–700, Sept 1987.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features

(surf). Comput. Vis. Image Underst., 110(3):346–359, June 2008.

[4] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Commun. ACM, 18(9):509–517, Sept. 1975.

[5] P. Besl and N. D. McKay. A method for registration of 3-d shapes. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 14(2):239–256, Feb

1992.

[6] P. Biber andW. Strasser. The normal distributions transform: a new approach to

laser scan matching. In Intelligent Robots and Systems, 2003. (IROS 2003). Pro-

104



ceedings. 2003 IEEE/RSJ International Conference on, volume 3, pages 2743–

2748 vol.3, Oct 2003.

[7] G. Blais and M. Levine. Registering multiview range data to create 3d com-

puter objects. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 17(8):820–824, Aug 1995.

[8] T. Botterill, R. Green, and S. Mills. Reconstructing partially visible models

using stereo vision, structured light, and the g2o framework. In Proceedings of

the 27th Conference on Image and Vision Computing New Zealand, IVCNZ ’12,

pages 370–375, New York, NY, USA, 2012. ACM.

[9] G. Bradski. Open source computer vision (opencv) library. 2000.

[10] D. A. Butler, S. Izadi, O. Hilliges, D. Molyneaux, S. Hodges, and D. Kim.

Shake’n’sense: Reducing interference for overlapping structured light depth cam-

eras. In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’12, pages 1933–1936, New York, NY, USA, 2012. ACM.

[11] J. Canny. A computational approach to edge detection. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, PAMI-8(6):679–698, Nov 1986.

[12] Y. Chen and G. Medioni. Object modelling by registration of multiple range

images. Image and Vision Computing, 10(3):145 – 155, 1992. Range Image

Understanding.

105



[13] D. Cole and P. Newman. Using laser range data for 3d slam in outdoor environ-

ments. In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE

International Conference on, pages 1556–1563, May 2006.

[14] Y. Cui, S. Schuon, S. Thrun, D. Stricker, and C. Theobalt. Algorithms for 3d

shape scanning with a depth camera. Pattern Analysis and Machine Intelligence,

IEEE Transactions on, 35(5):1039–1050, May 2013.

[15] H. Deng, W. Zhang, E. Mortensen, T. Dietterich, and L. Shapiro. Principal

curvature-based region detector for object recognition. In Computer Vision and

Pattern Recognition, 2007. CVPR ’07. IEEE Conference on, pages 1–8, June

2007.

[16] T. K. Dey, G. Li, and J. Sun. Normal estimation for point clouds: A comparison

study for a voronoi based method. In Proceedings of the Second Eurographics

/ IEEE VGTC Conference on Point-Based Graphics, SPBG’05, pages 39–46,

Aire-la-Ville, Switzerland, Switzerland, 2005. Eurographics Association.

[17] J. S. Dhillon, C. Ramos, B. C. Wünsche, and C. Lutteroth. Leveraging consumer

sensing devices for telehealth. In Proceedings of the 13th International Conference

of the NZ Chapter of the ACM’s Special Interest Group on Human-Computer

Interaction, CHINZ ’12, pages 29–35, New York, NY, USA, 2012. ACM.

[18] C. Dorai, G. Wang, A. Jain, and C. Mercer. Registration and integration of

multiple object views for 3d model construction. Pattern Analysis and Machine

Intelligence, IEEE Transactions on, 20(1):83–89, Jan 1998.

106



[19] H. Du, P. Henry, X. Ren, M. Cheng, D. B. Goldman, S. M. Seitz, and D. Fox.

Interactive 3d modeling of indoor environments with a consumer depth camera.

In Proceedings of the 13th International Conference on Ubiquitous Computing,

UbiComp ’11, pages 75–84, New York, NY, USA, 2011. ACM.

[20] D. W. Eggert, A. Lorusso, and R. B. Fisher. Estimating 3-d rigid body trans-

formations: A comparison of four major algorithms. Mach. Vision Appl., 9(5-

6):272–290, Mar. 1997.

[21] M. Firman. List of rgbd datasets. http://www0.cs.ucl.ac.uk/staff/M.

Firman/RGBDdatasets/. Accessed: 2015-04-08.

[22] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartography.

Commun. ACM, 24(6):381–395, June 1981.

[23] D. Fofi, T. Sliwa, and Y. Voisin. A comparative survey on invisible structured

light. volume 5303, pages 90–98, 2004.

[24] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving?

the kitti vision benchmark suite. In Computer Vision and Pattern Recognition

(CVPR), 2012 IEEE Conference on, pages 3354–3361, June 2012.

[25] B. Glocker, S. Izadi, J. Shotton, and A. Criminisi. Real-time rgb-d camera

relocalization. In International Symposium on Mixed and Augmented Reality

(ISMAR). IEEE, October 2013.

107



[26] G. Godin, M. Rioux, and R. Baribeau. Three-dimensional registration using

range and intensity information. In Proceedings of SPIE, volume 2350, pages

279–290, 1994.

[27] D. Gossow, D. Weikersdorfer, and M. Beetz. Distinctive texture features from

perspective-invariant keypoints. In Pattern Recognition (ICPR), 2012 21st In-

ternational Conference on, pages 2764–2767, Nov 2012.

[28] A. Handa, T. Whelan, J. McDonald, and A. Davison. A benchmark for rgb-

d visual odometry, 3d reconstruction and slam. In Robotics and Automation

(ICRA), 2014 IEEE International Conference on, pages 1524–1531, May 2014.

[29] A. J. Hanson. Visualizing Quaternions (The Morgan Kaufmann Series in Inter-

active 3D Technology). Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2006.

[30] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. Rgb-d mapping: Using

depth cameras for dense 3d modeling of indoor environments. In O. Khatib,

V. Kumar, and G. Sukhatme, editors, Experimental Robotics, volume 79 of

Springer Tracts in Advanced Robotics, pages 477–491. Springer Berlin Heidel-

berg, 2014.

[31] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,

S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. Kinectfusion: Real-time

3d reconstruction and interaction using a moving depth camera. In Proceedings

of the 24th Annual ACM Symposium on User Interface Software and Technology,

UIST ’11, pages 559–568, New York, NY, USA, 2011. ACM.

108



[32] A. Kim and R. Eustice. Real-time visual slam for autonomous underwater hull

inspection using visual saliency. Robotics, IEEE Transactions on, 29(3):719–733,

June 2013.

[33] R. P. I. I. P. Laboratory and D. Meagher. Octree Encoding: a New Technique

for the Representation, Manipulation and Display of Arbitrary 3-D Objects by

Computer. 1980.

[34] H. Lategahn, A. Geiger, and B. Kitt. Visual slam for autonomous ground vehi-

cles. In Robotics and Automation (ICRA), 2011 IEEE International Conference

on, pages 1732–1737, May 2011.

[35] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton,

S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The digital michelan-

gelo project: 3d scanning of large statues. In Proceedings of the 27th Annual

Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’00,

pages 131–144, New York, NY, USA, 2000. ACM Press/Addison-Wesley Pub-

lishing Co.

[36] D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.

Comput. Vision, 60(2):91–110, Nov. 2004.

[37] M. Magnusson, A. Lilienthal, and T. Duckett. Scan registration for autonomous

mining vehicles using 3d-ndt. Journal of Field Robotics, pages 803–827, 2007.

[38] S. Malassiotis, N. Aifanti, and M. Strintzis. A gesture recognition system using 3d

data. In 3D Data Processing Visualization and Transmission, 2002. Proceedings.

First International Symposium on, pages 190–193, 2002.

109



[39] Z. Marton, R. Rusu, and M. Beetz. On fast surface reconstruction methods for

large and noisy point clouds. In Robotics and Automation, 2009. ICRA ’09.

IEEE International Conference on, pages 3218–3223, May 2009.

[40] T. Masuda, K. Sakaue, and N. Yokoya. Registration and integration of multiple

range images for 3-d model construction. In Proceedings of the 1996 International

Conference on Pattern Recognition (ICPR ’96) Volume I - Volume 7270, ICPR

’96, pages 879–, Washington, DC, USA, 1996. IEEE Computer Society.

[41] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide baseline stereo from

maximally stable extremal regions. In In proceedings of British Machine Vision

Conference (BVMC), pages 1–10, 2002.

[42] J. Matas, C. Galambos, and J. Kittler. Robust detection of lines using the

progressive probabilistic Hough transform. Computer Vision and Image Under-

standing, 78(1):119–137, 2000.

[43] S. Meister, S. Izadi, P. Kohli, M. Hammerle, C. Rother, and D. Kondermann.

When can we use kinectfusion for ground truth acquisition? In Workshop on

Color-Depth Camera Fusion in Robotics, IROS, 2012, 2012.

[44] O. Miksik and K. Mikolajczyk. Evaluation of local detectors and descriptors for

fast feature matching. In Pattern Recognition (ICPR), 2012 21st International

Conference on, pages 2681–2684, Nov 2012.

[45] F. Moosmann and C. Stiller. Velodyne slam. In Intelligent Vehicles Symposium

(IV), 2011 IEEE, pages 393–398, June 2011.

110



[46] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic al-

gorithm configuration. In International Conference on Computer Vision Theory

and Application (VISSAPP’09), pages 331–340. INSTICC Press, 2009.

[47] P. Neugebauer. Geometrical cloning of 3d objects via simultaneous registration of

multiple range images. In Shape Modeling and Applications, 1997. Proceedings.,

1997 International Conference on, pages 130–139, Mar 1997.

[48] Y. Park, V. Lepetit, and W. Woo. Multiple 3d object tracking for augmented

reality. In Proceedings of the 7th IEEE/ACM International Symposium on Mixed

and Augmented Reality, ISMAR ’08, pages 117–120, Washington, DC, USA,

2008. IEEE Computer Society.

[49] F. Pomerleau, S. Magnenat, F. Colas, M. Liu, and R. Siegwart. Tracking a depth

camera: Parameter exploration for fast icp. In Intelligent Robots and Systems

(IROS), 2011 IEEE/RSJ International Conference on, pages 3824–3829, Sept

2011.

[50] K. Pulli. Multiview registration for large data sets. In 3-D Digital Imaging and

Modeling, 1999. Proceedings. Second International Conference on, pages 160–

168, 1999.

[51] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient alternative

to sift or surf. In Computer Vision (ICCV), 2011 IEEE International Conference

on, pages 2564–2571, Nov 2011.

[52] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm. In 3-D

Digital Imaging and Modeling, pages 145–152. IEEE, 2001.

111



[53] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In IEEE

International Conference on Robotics and Automation (ICRA), Shanghai, China,

May 9-13 2011.

[54] F. Sadlo, T. Weyrich, R. Peikert, and M. Gross. A practical structured light

acquisition system for point-based geometry and texture. In Proceedings of

the Second Eurographics / IEEE VGTC Conference on Point-Based Graphics,

SPBG’05, pages 89–98, Aire-la-Ville, Switzerland, Switzerland, 2005. Eurograph-

ics Association.

[55] J. Saez, A. Hogue, F. Escolano, and M. Jenkin. Underwater 3d slam through en-

tropy minimization. In Robotics and Automation, 2006. ICRA 2006. Proceedings

2006 IEEE International Conference on, pages 3562–3567, May 2006.

[56] A. R. Sahand Seifi, Oscar Meruvia-Pastor. Derees supplementary materi-

als. http://www.cs.mun.ca/~omeruvia/research/research.html. Accessed:

2014-08-20.

[57] O. M.-P. Sahand Seifi, Afsaneh Rafighi. Real-time registration of highly variant

colour+depth image pairs (poster). http://www.cs.mcgill.ca/~kry/gi2014/

GI2014PosterProceedings.pdf, 2014. Poster presented at Graphics Interface

2014 conference, May 7-9, Montreal, Quebec, Canada.

[58] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms. Int. J. Comput. Vision, 47(1-3):7–42, Apr.

2002.

112



[59] S. Seifi, A. Rafighi, and O. Meruvia-Pastor. Derees: Real-time registration of

rgbd images using image-based feature detection and robust 3d correspondence

estimation and refinement. In Proceedings of the 29th International Conference

on Image and Vision Computing New Zealand, IVCNZ ’14, pages 136–141, New

York, NY, USA, 2014. ACM.

[60] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark

for the evaluation of rgb-d slam systems. In Proc. of the International Conference

on Intelligent Robot Systems (IROS), Oct. 2012.

[61] H. Sunyoto, W. Van der Mark, and D. Gavrila. A comparative study of fast

dense stereo vision algorithms. In Intelligent Vehicles Symposium, 2004 IEEE,

pages 319–324, June 2004.

[62] S. Suzuki and K. Abe. Topological structural analysis of digitized binary im-

ages by border following. Computer Vision, Graphics, and Image Processing,

30(1):32–46, 1985.

[63] J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan. Scanning 3d full human bodies

using kinects. Visualization and Computer Graphics, IEEE Transactions on,

18(4):643–650, April 2012.

[64] G. Turk and M. Levoy. Zippered polygon meshes from range images. In Pro-

ceedings of the 21st Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’94, pages 311–318, New York, NY, USA, 1994. ACM.

[65] T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: A survey.

Found. Trends. Comput. Graph. Vis., 3(3):177–280, July 2008.

113



[66] R. Vasudevan, G. Kurillo, E. Lobaton, T. Bernardin, O. Kreylos, R. Bajcsy,

and K. Nahrstedt. High-quality visualization for geographically distributed 3-d

teleimmersive applications. Multimedia, IEEE Transactions on, 13(3):573–584,

June 2011.

[67] K. Wang and Q. Yu. Accurate 3d object measurement and inspection using

structured light systems. In Proceedings of the 12th International Conference

on Computer Systems and Technologies, CompSysTech ’11, pages 221–227, New

York, NY, USA, 2011. ACM.

[68] S. Weik. Registration of 3-d partial surface models using luminance and depth

information. In 3-D Digital Imaging and Modeling, 1997. Proceedings., Interna-

tional Conference on Recent Advances in, pages 93–100, May 1997.

[69] L. Xia, C.-C. Chen, and J. Aggarwal. Human detection using depth information

by kinect. In Computer Vision and Pattern Recognition Workshops (CVPRW),

2011 IEEE Computer Society Conference on, pages 15–22, June 2011.

[70] B. Zeisl, K. Koser, and M. Pollefeys. Automatic registration of rgb-d scans

via salient directions. In Computer Vision (ICCV), 2013 IEEE International

Conference on, pages 2808–2815. IEEE, 2013.

[71] Q.-Y. Zhou and V. Koltun. Dense scene reconstruction with points of interest.

ACM Trans. Graph., 32(4):112:1–112:8, July 2013.

[72] B. Zitov and J. Flusser. Image registration methods: a survey. Image and Vision

Computing, 21(11):977 – 1000, 2003.

114



[73] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. In Pro-

ceedings of the 28th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’01, pages 371–378, New York, NY, USA, 2001. ACM.

115


