
Applied Algorithms Date: January 24, 2012

Rabin-Karp algorithm

Professor: Antonina Kolokolova Scribe: Md. Asaduzzaman

1 String Matching

1.1 Rabin-Karp algorithm

Rabin-Karp string searching algorithm calculates a numerical (hash) value for the pattern p,
and for each m-character substring of text t. Then it compares the numerical values instead of
comparing the actual symbols. If any match is found, it compares the pattern with the substring
by naive approach. Otherwise it shifts to next substring of t to compare with p.

We can compute the numerical (hash) values using Horner’s rule.
Lets assume, h0 = k

h1 = d
(
k − p [1] .dm−1

)
+ p [m + 1]

Suppose, we have given a text t = [3, 1, 4, 1, 5, 2] and m = 5, q = 13;
t0 = 31415
So t1 = 10(31415 - 105−1.t[1]) + t[5+1]

= 10(31415 − 104.3) + 2
= 10(1415) + 2 = 14152

Here p and substring ti may be too large to work with conveniently. The simple solution is,
we can compute p and the ti modulo a suitable modulus q.

So for each i,
hi+1 = (d

(
hi − t [i + 1] .dm−1

)
+ t [m + i + 1]) mod q

The modulus q is typically chosen as a prime such that d.q fits within one computer word.
Algorithm

Compute hp (for pattern p)
Compute ht (for the first substring of t with m length)
For i = 1 to n−m

If hp = ht

Match t[ii + m] with p, if matched return 1
Else

ht = (d
(
ht − t [i + 1] .dm−1

)
+ t [m + i + 1]) mod q

End
Suppose, t= 2359023141526739921 and p = 31415,
Now, hp = 7 (31415 = 7 (mod 13))

substring beginning at position 7 = valid match

1

This algorithm has a significant improvement in average-case running time over naive ap-
proach.

2

