Evolving Turing-Complete Programs for a Register Machine with
Self-modifying Code

Peter Nordin
Universitat Dortmund
Fachbereich Informatik

Lehrstuhl fur Systemanalyse
D—-44221 Dortmund

nordin@I|s11.informatik.uni-dortmund.de

Abstract

The majority of commercial computers today
are register machines of von Neumann type.
We have developed a method to evolve
Turing-complete programs for a register ma-
chine. The described implementation enables
the use of most program constructs, such as
arithmetic operators, large indexed memory,
automatic decomposition into subfunctions
and subroutines (ADFs), conditional con-
structs 1.e. if-then-else, jumps, loop struc-
tures, recursion, protected functions, string
and list functions. Any C-function can be
compiled and linked into the function set
of the system. The use of register machine
language allows us to work at the lowest
level of binary machine code without any
interpreting steps. In a von Neumann ma-
chine, programs and data reside in the same
memory and the genetic operators can thus
directly manipulate the binary machine code
in memory. The genetic operators themselves
are written in C-language but they modify
individuals in binary representation. The
result is an execution speed enhancement of
up to 100 times compared to an interpret-
ing C-language implementation, and up to
2000 times compared to a LISP implement-
ation. The use of binary machine code de-
mands a very compact coding of about one
byte per node in the individual. The result-
ing evolved programs are disassembled into
C-modules and can be incorporated into a
conventional software development environ-
ment. The low memory requirements and the
significant speed enhancement of this tech-
nique could be of use when applying genetic
programming to new application areas, plat-
forms and research domains.

Wolfgang Banzhaf
Universitat Dortmund
Fachbereich Informatik

Lehrstuhl fur Systemanalyse

D—-44221 Dortmund

banzhaf@ls11.informatik.uni-dortmund.de

1 Introduction

A von Neumann machine is a machine whose program
resides in the same storage location as the data used
by that program. The name is after the famous Hun-
garian/American mathematician John von Neumann,
and almost all computers today are of the von Neu-
mann type. The fact that the program could be con-
sidered as just another kind of data makes it possible
to write programs manipulating other programs and
programs manipulating themselves. The memory in
a such a machine could be viewed as an indexed ar-
ray of integers and a program is thus also a collection
of integer numbers. A program manipulating another
program’s binary instructions is just a program manip-
ulating an array of integers. There are no higher level
languages that directly support this meta manipulat-
ing with the appropriate tools and structures. In the
few high level languages where it is, possible it comes
as a side effect of the general freedom of memory ma-
nipulations. The language we have been using is C
because it is efficient and gives the possibility to ma-
nipulate the memory where a program is stored.

In genetic programming, the goal of the system is to
evolve algorithms or programs in a given language
(Koza 1992). Most genetic programming systems
use a tree structure for the representation of pro-
grams. The most used tree representation form is
the S-expressions common in LISP. This representa-
tion guarantees evolved programs to be syntactically
correct after the genetic operators are applied. In the
original model (Koza 1992), the only genetic operator,
apart from selection, is the subtree exchanging cros-
sover.

A few experiments have also been performed with
fixed length character string representation showing
the general difficulties of that approach (Cramer 1985).

This paper describes the first successful method to

evolve a complex register machine with a genetic al-
gorithm. Our register machine system is complex
enough to evolve code for an existing hardware ma-
chine, making it possible for the processor to, through
evolution, self-modify its binary code using no inter-
pretation or intermediate code.

The implementation uses a bit string representation
which is necessary when evolving binary code directly.
We call this approach compiling genetic programming

(CGP).

2 Compiling Genetic Programming

We have earlier demonstrated how to use an evolu-
tionary algorithm to evolve binary machine language
programs (Nordin 1994). This algorithm evolved fixed
length binary strings and used uniform crossover, and
mutation. The crossover was prevented from dam-
aging certain bit fields within the 32 bits of instruc-
tions, which guaranteed that only valid machine code
instructions where generated through crossover. The
mutation operator had a similar protection feature.

We tried this simpler system on a number of problems.
In (Nordin 1994) we also compared the performance of
this Compiling Genetic Programming System (CGPS)
to that of a neural network. We evaluated the two ma-
chine learning paradigms on a natural language task,
where the goal is to find spelling heuristics to determ-
ine whether a word is a noun or a non-noun. The
CGPS clearly outperformed the neural network in this
example.

In these earlier experiments we only used arithmetic
and logic operators between two registers and we only
used a single procedure structure. This guaranteed
that there were no unwanted effects during execution,
no loops or out of bound jumps, etc. The evolved
programs were functions limited to one input and one
output parameter.

The system described below is a significantly more
complete machine learning and induction system, cap-
able of evolving Turing-complete programs. In con-
trast to the previous system, the new system merits:

use of several machine registers

dynamic allocation of population memory
variable length programs

multiple input parameters to functions
unlimited memory through indexed memory
automatic evolution of subfunctions

e if-then-else structures

e jumps

e use of loop structures such as: for,while,repeat

e recursion, direct and through subfunctions

e protected functions, e.g. division

e string functions and list functions

e linking any C-function for use in the function set

In addition, we wanted these goals to be met by a pro-
gram written mostly in C-language. We also wanted
the program to use unrestricted crossover at instruc-
tion boundaries. By unrestricted crossover we mean
that the crossover acting on the strings of instruc-
tions should be able to work blindly, in the function
body, without checking what kind of instructions were
moved, and where. The advantages is that the imple-
mentation will be very efficient, because the algorithm
will only consist of a loop moving a sequence of in-
tegers, something a computer does very well. The
implementation will be simple and easily extendable
because there will be a minimum of interaction and
interference between parts of the program. Equally
important is the fact that the program will be more
easily ported to different platforms because the archi-
tecturally specific parts can be restricted to a minor
part of the program. The crossover mechanism for in-
stance, does not have to be affected.

The method of binary machine code manipulation
should not be confused with the task of translating
a genetic programming system into assembler code,
which is how compiler work Instead this is a new way
of making large-scale efficient meta manipulating pro-
grams.

2.1 Why Use a Compiling Approach

The use of a CGPS has several advantages over inter-
preting systems:

e execution speed

e compact kernel

e compact representation

e simple memory management

The efficiency improvement in compiling genetic pro-
gramming comes from the deletion of all interpreting
steps. Instead of using a structure defined by the pro-
grammer to be run through an interpreter, the al-
gorithm here manipulates and executes the binaries
directly. The efficiency benefit comes mostly from de-
letion of the interpreting steps, but also from the sim-
plicity of manipulating the linear integer array that
constitute the binary machine code program.

The lack of any interpreting steps makes the kernel
of the algorithm more compact, because no definition
of the interpreted language is needed. The machine
code binary format is compact in itself which is im-

portant when working with large populations. The
inherent linear structure of a binary code program
forces the design of a system that uses simple memory
management. The less frequent use of pointers and
garbage collection requires a straight forward handling
of memory that is an advantage in real-time applica-
tions for instance.

The approach of binary manipulating machine learn-
ing algorithms, building on the idea behind a von Neu-
mann machine, is applicable on most computers, from
the biggest super-computers to the small invisible sys-
tems in our cars, cameras and washing machines.

3 Implementation

In this section we describe the implementation of the
CGPS. We start by presenting some basic facts about
machine code representation of functions, and then
continue with the description of the CGPS implement-
ation.

3.1 The Structure of a Machine Code
Function

Machine language is the sequence of integers that con-
stitute the program that the processor is executing.By
binary machine code, we mean the actual numbers
stored (in binary format) in the computer. Assembly
language is a higher level text-based language with a
simple translation to machine language.

A function call in machine language has to perform
three different subtasks:

e Program control transfer and storing the return ad-
dress

e Save processor registers

e Transfer parameters

The most important instruction for functions and pro-
cedures is the call instruction. It is present in all
kinds of processors and it works as a jump instruction
that saves the memory address of the location it was
jumping from. This will allow a return instruction to
return back to this memory location when execution
of the function is complete. Most call instructions
save the return address in a special memory segment
called the stack, but some architectures, such as the
SPARC architecture, save it internally in a register in
the processor. A call instruction is not sufficient to
make a complete function call. The contents of the
registers must be saved somewhere before the actual
instructions of the function are executed. This assures
that the called function will not interfere with the res-

ults in the registers of the calling function, and gives
the called function the liberty to manipulate these re-
gisters itself. The most common place to store the
contents of the calling functions registers is the stack.
Some architectures, such as the SPARC-architecture,
stores it inside the processor by a special save instruc-
tion. When the execution of the function is complete,
the registers of the calling function have to be restored
to allow this function to continue processing in the con-
text it was working in before the function call.

The last task a processor has to perform in a complete
function call is to transfer the input parameters to the
function. Again, this is most commonly done by stor-
ing these values in the stack but it can also be done
by using special registers inside the processor.

The structure of a function on the machine code level
could be thought of as an array of integers divided
into three parts: the header, the body and the footer.
The header of a function does one or both of the save
and transfer steps mentioned above. The header is
fairly constant and is not manipulated by the genetic
operators of the program. It is defined at an early
initialization phase of the system.

The body of the function does the actual work that
the function is supposed to carry out. When the body
of the function is entered, all its parameters are access-
ible to it, and the registers from the calling function are
saved. The genetic operators are only allowed to oper-
ate in the body of the function structure. The footer
restores the registers, transfers the resulting values and
executes the return instruction.

3.2 Self Modifying' Code in C language

So far we have only discussed concepts of machine code
and assembler. Our implementation is, however, writ-
ten in C. The intention is to write the genetic operators
and kernel in a high-level language and only keep the
manipulated structures in binary code.

In a computer, all data are represented as integer num-
bers. To make programming an easier task, there are
additional data types and structures in a high-level
program, for instance: strings, pointers, characters,
bitmaps, etc. But all of these structures are trans-
lated into integers. To translate an object of a certain
type into an object of another type, to cast it, is thus
only an operation in the high level language. At the
machine code level they are represented by the same
integer.

'In this paper the term self-modifying means a program
that manipulates its binaries, as common in a low-level
programming context

Our approach is built on the casting of a pointer to
an array and a pointer to a function. The pointer
to the array is used when manipulating the program
structures and the pointer to the function is used when
the individual is executed. In the machine it is the
same integer, but we write the cast in the code to
satisfy the compiler. This cast is the core principle
of binary manipulating machine language. We change
an integer array, and then we cast it into a function
pointer and execute it.

Below we give an example of how the pointer to
sumarray is casted by (function_ptr) to a function
pointer and called with the value of two and three.

typedef unsigned int(x function_ptr) ();

unsigned int sumarray[1={2178940928, 2953183257,
2179465216, 2177359880, 16777216};

a=((function_ptr) sumarray)(2,3);

These three lines of C-code will compute the sum
of two and three and put the result in variable “a”
by calling a function defined by the integers in the
sumarray. The first line of the code declares the func-
tion pointer type. The second line declares an integer
array containing integers for the instructions in the
sum function. The last line converts the address of
the sumarray from, a pointer to an integer array, to
a pointer to a function, and then calls this function
with the arguments two and three. The result from
the function call is placed in variable “a”.

This C-code illustrates the basic principles of com-
piling genetic programming. The sumarray can be
changed just as any other array as long as its content
is a valid function.

4 The SPARC Architecture

We have chosen to work with the SPARC architecture
and SUN workstations because it is one of the most
widely used architectures in the research community,
and its hardware supports safe multi-tasking. Other
simpler versions (i.e. without ADFs) of the CGPS ex-
ist for other architecture platforms. For a discussion
about portability and advantages of different architec-
tures see (Nordin 1994).

We will divide our introduction into two parts: one de-
scribing the registers, and one describing the instruc-
tions of the processor.

4.1 Registers

The key to understanding genetic programming with a
register machine is understanding the use of registers
and their role in function calls. The most important

of the different kinds of registers are the so called win-
dowed registers. It is between the windowed registers
that almost all arithmetic and logic operations take
place. The windowed registers are divided into four
classes: in-registers, out-registers, local registers and
global registers.

There are eight registers in each of these classes. When
a function is called in a register machine, the re-
gisters from the calling function must be saved. In
our SPARC implementation, a save instruction is ex-
ecuted which copies the contents of the out registers
into a new set of corresponding in registers. Register
outl is copied into in0, outl copied into inli, etc. Here
in is a new input register owned by the called function.
The values in the old in registers are kept or saved.
The processor has an internal storage for a few sets of
registers such as this and if this limit is exceeded the
hardware and system software will save the contents in
memory. For the user, this mechanism can be thought
of as a small internal stack. It is important to note
that a save instruction copies the contents of the call-
ing functions out registers into the called functions in
registers, while the restore instruction copies the con-
tents of the returning function’s in registers back into
the calling function’s out registers. When a function
wants to call another function and pass some variables,
it places the parameters in its out registers and makes
a call. After the function call, the returning values can
be found again in the out registers.

The local registers are local to the function working for
the moment and is used for temporary storage. A fresh
set of local registers are provided when a new function
is called, but there is no special transfer of values into
these registers. The global registers are always the
They keep their meaning and content across
function calls, and can thus be used to store global
values. There are no alternative sets of these registers
as there are with the in, out and local registers.

same.

Registers in6, in7, oul6, out7 are by convention used
to store stack and frame pointer as well as the return
address in a function call and should not be used dir-
ectly by the algorithm. The registers left to be used for
arithmetic operations are global register one, in0-in,
outl-outh, locall-local?.

4.2 Instructions

SPARC is a RISC architecture with a word length of
32-bits. All of the instructions have this size. The 32
bits define the instructions, operations, operators and

constants to be used. We use the following subset of
SPARC machine code instructions in CGPS:

e ADD, Addition

e SUB, Subtraction

e MUL, Integer multiplication
e SLL, Shift left

e SRL, Shift right

e XOR, Exclusive or

e AND, Logical And

e OR, Logical Or

e Call local register 0-7

The first eight instructions are arithmetic and logic
instructions. They contain the information of the des-
tination register, the two operands and the arithmetic
or logic operation to be used. One of the two oper-
ands can be a small constant, the other has to be an-
other register. A single 32 bit instruction thus contains
the information of four nodes in a conventional ge-
netic programming system, one node for the operator,
two nodes for the two operands and one node for the
destination of the result. This approach is thus quite
memory efficient, using only four bytes of memory to
store four nodes.

We use eight different call instructions, one for each of
the local registers. The call instruction jumps to ad-
dresses given by the content of the local registers in the
function. The local registers are thus reserved for this
usage in our implementation, and have to be initial-
ized in the header of every function, to make sure that
they point to a function in use. These instructions are
the basis for external functions, automatically defined
subfunctions, controls structures and memory manip-
ulations. The number of these instructions used in the
initialization is determined by the number of ADFs
and external functions. The maximum number of ex-
ternal functions and ADFs are in this implementation
limited to eight, but this figure could easily be exten-
ded.

4.3 Leaf Procedures

The above described properties of the call and save in-
structions make it possible to use two kinds of proced-
ure. The first type of procedure is a full procedure that
uses the save and restore instructions, and the proced-
ure is consequently allowed to use and manipulate in,
out and local registers. The save and restore instruc-
tions, however, consumes some processor cycles. If
there is room inside the processor’s “internal stack”,
the time consumption is moderate, but if storage in
memory is needed it will use several processor cycles.
The second type of procedure is called a leaf proced-
ure, because it cannot call another procedure and is
thus a leaf in the procedure structure of a program.
A leaf procedure does not perform a save operation

and works with the same set of registers as the call-
ing procedure. To avoid interfering with the content
of the calling procedure, it only manipulates the out
registers, which are assumed to be destroyed by the
compiler across function calls. One of the elegant con-
sequences of this technique is that the calling proced-
ure does not have to know what kind of procedure it is
calling. This means that linking of procedures works
normally. The difference in the leaf procedure is that
it only manipulates the out registers, it does not use
save or restore, and it has a special return instruc-
tion that looks for the return address in “out” register
seven instead of “in” register seven.

In some of the examples in Compiling Genetic Pro-
gramming below, we use a hybrid of the normal pro-
cedure and the leaf procedure, where we manipulate
the “in” registers in a leaf procedure. This type of
leaf-procedure is used for the efficient and safe imple-
mentation of, for instance, recursion, indexed memory,
loops, if statements, etc.

5 The Evolutionary Algorithm

The evolutionary algorithm works directly on the in-
dividuals represented by a string of bits, where every
32 bits defines an instruction. The genetic operators
are selection, crossover and mutation.

5.1 Crossover

Crossover is only allowed between the instructions at
a locus that is a multiple of 32. The crossover op-
erator selects two such points in two individuals and
then swaps the instructions between them. This ap-
proach enables us to cut and splice blocks of instruc-
tions into the individual without the risk of generating
programs with invalid syntax. The crossover operator
is also prevented from manipulating the header and
footer of the function. Only the body of the function
can be affected. If ADFs are used, then one subfunc-
tion is selected from every individual and the crossover
is performed between these two selected subfunctions.
The principle of unrestricted crossover is crucial to
our design choices in the system. Our goal is that
the crossover operator acting on the strings of instruc-
tions should be able to work blindly without checking
what kind of instructions are moved and where. It
is easy to find examples of instructions and combin-
ations of instructions where these properties do not
hold. The normal call and branch instructions contain
an offset which is added to the program counter. If
such an instruction is moved to another memory po-
sition then the call or branch will point to another

memory location, where there might not be any valid
function. The SPARC architecture does not have calls
with absolute addresses, which still would work after
crossover. Instead, we use calls to an address specified
by a register. The value in the register will be the
same even if the instruction is moved by crossover.
Machine language is quite flexible and the restriction
of instruction use is possible without abandoning the
goal of Turing-completeness.

5.2 The Mutation Operator

The mutation operator selects an instruction at ran-
dom and checks whether it has a constant part or if
it is only an operation between registers. If it has a
constant part, a bit in this constant is mutated an. It
can also mutate the index defining the source and des-
tination registers of the operation. If the instruction
does not have a constant part, the instruction’s type,
source and destination registers are subject to muta-
tion. The bits in calls and jump instructions are not
mutated but may be swapped for other instructions.
This division of the mutation operator in steps ensures
that valid are instructions are created.

6 Initialization

The memory used for the individuals in the arrays is
a linear array of integers. The array is divided into
blocks determined by the system parameter mazimum
length. A fixed maximum length is thus reserved for
every individual. If there are automatically defined
functions, then this memory is allocated for every sub-
function according to the maximal number of ADFs.
The program and its subfunctions, then vary in length
within these boundaries.

The advantages of this paradigm is that we have simple
memory management, without garbage collection, etc.
There 1s, furthermore, a constant, easily calculated,
memory usage once the system is initialized. This
could be a requirement in real-time systems and in
systems with limited memory resources.

The initialization of the header consists of two parts;
one that is fixed and one that depends on the number
of ADFs and external functions. The fixed part of the
header is a save instruction. The second part of the
header initializes the local registers. The local registers
are used to store jump addresses to ADFs and external
functions by load instructions that load the appropri-
ate addresses into these registers. The function body is
initialized by randomly selecting instructions from the
function set, including the call instructions using local
registers. If an instruction is an arithmetic instruction

then input and output registers are chosen for oper-
ands and destination, according to the parameter for
mazimum number of registers supplied by the user.

7 Additional features of the system

7.1 Automatically Defined Subfunctions

Automatically defined functions (ADF) are modu-
larisations or subfunctions within an individual that
spontaneously emerge during evolution. An ADF call
has the same structure as a function call. It consists of
instructions for transferring the function input para-
meters into the out variables and a call instruction.

The linear array of integers that constitute an indi-
vidual is divided into a number of equal size segments.
The number of segments corresponds to the mazimum
number of ADFs parameter. Every such memory sec-
tion is an ADF. The ADF is organized just as the main
functions with a header, a footer, and a function body.

In the header of the ADF the local registers are initial-
ized to contain the addresses of the other ADFs that
could be called from this ADF. When the recursion
option of the system is switched off the local registers
are only loaded with the addresses of ADFs higher up
in the hierarchy. Remaining unused local registers are
initialized with the value of a dummy function. With
this scheme it is possible to allow unrestricted cros-
sover between individuals and between subfunctions,
because the local registers will always be initialized
in the header of each subfunctions to a correct ad-
dress. The “call local register” instructions can thus be
freely copied and moved in the population and between
ADFs at different levels.

7.2 Recursion

When recursion is used the local registers are not only
initialized to the values of ADFs higher up in the hier-
archy, but also to the current function themselves, en-
abling the function to call itself. whether we use re-
cursion or not, which makes the implementation less
complex.

In any approach we use for recursion, there will always
be the problem of infinite chains of instructions calls.
The halting problem makes it impossible to know in
advance which recursive functions will stop and which
will not. The solution to this problem is to have a
global variable that is incremented for every time a
function is called (Brave 1994). If a certain limit value
is reached, then the execution of the individual is aban-
doned. The code for this checking is placed in the

header of each function

7.3 Leaf Procedures as Program Primitives.

Loops are implemented in a manner similar to recur-
sion. A leaf procedure is used which performs a test
of a variable. Depending on the outcome of the test, a
loop branch is either performed or not. The test could,
for instance, be whether the last performed arithmetic
instruction had the value zero as a result or not. This
is tested by checking the zero flag in the processor.
Many loop structures could be formed by checking
other integer conditions from the last instruction. The
branch in a loop, is made with a return instruction.
Recall that the return instruction is nothing but a
“longjump” instruction, jumping to the address of a
register to which a constant is added. This constant
could be positive or negative. The normal return in-
struction jumps back to the address given by the con-
tent of register out7 or in7. When we use this instruc-
tion in a loop we decrement out7 before the jump and
the program control jumps back to an address before
the call to the “loop leaf procedure”. The loop leaf
procedures, also decrement and check a global vari-
able, giving the number of mazimum loop iteration.
The fact that the different call addresses so far in the
execution of the individual are all stored and accessible
to the leaf procedure makes it possible to construct a
large number of control structures. With this method
it is possible to define efficient external leaf procedures
that implement ordinary jumps, all kinds of loops, in-
dexed memory, if then else structures, and protected
functions.

7.4 External functions

An external function is a function that is not part
of the processors instruction set, i.e. string and list
functions. It is possible to incorporate any C-function
into the function set by a simple chain of compilations
and linkings. Any C-module could be compiled and
linked into the system. This feature means that the
CGPS is as general as any other GP systems and the
terminal set, for instance, can be filled with complex
functions such as bitmap manipulations, file processing
etc. Many external functions? receives a pointer to its
input data and returns a pointer to the output. 3

2The external procedures could also be the primitives
of any Turing-machine showing the turing-completeness of
the system.

®The external procedures could also be the primitives
of any Turing-machine showing the turing-completeness of
the system.

7.5 C-language Output

The current system has a disassembler that translates
the generated binary machine code into C-language
modules. The feature enables the system to be used
as a utility to a conventional software development en-
vironment. The following example shows the output
from the disassembler system:

unsigned int fni(a,b)
register unsigned int a,b;

{
a=a+b;
a=ax 2;
return(a);

}

unsigned int fnO(a,b)
register unsigned int a,b,c;
{

while(a > 0)

{

¢ = fni(c,b);
a=a-1;

}

a=¢+0;

return(a);

}

The disassembler could also be requested to produce
assembler code.

8 Applications

The compiling method will be specially suited for ap-
plications of genetic programming within areas that
require:

e high execution speed demands

e real-time learning

e large population sizes

e low end architectures, consumer electronics
e well defined memory behavior

These properties could be of use when applying genetic
programming to new application areas, platforms and
research domains.

9 Speed Evaluation

The original GP systems were written in LISP, a lan-
guage well suited for meta-manipulations. Several
other implementations have been presented in other
high level interpreting language, for instance Mathem-
atica. Recently a few implementations of interpreting
GP system in C has been presented (Tackett 1994).

Tackett has evaluated his elegantly written SGPS C-
system and measured its performance against a LISP
system. His conclusion is that the interpreting C-
language GP system is about 25 times faster.

We have in turn evaluated the execution time differ-

ences between the SGPS and our compiling genetic
programming system. The tests were performed on a
SPARC station IPX and the problem was symbolic re-
gression of polynomials. The size constraints were ad-
justed to be as equivalent as possible when the SGPS
worked with tree structures and the CGPS with bin-
ary strings. The function set contained the addition,
multiplication and subtraction operators. Ten fitness
cases were used with a population size of 1000 indi-
viduals. By speed we mean the number of populations
executed per minute.

The result showed that the SGPS system proceeded
about 8-11 generations per minute while the compiling
system proceeded between 700-1200 populations per
minute*. For some experiments, the speed enhance-
ment for the CGPS was a 100 times. On average, the
compiling system was 60 times faster than the inter-
preting C language system. This means that the speed
up compared to LISP implementations is in the mag-

nitude of 1500-2000 times.

These figures should, however, be seen as an indication
only, considering that the two systems have different
representations and features.

10 Summary

In this paper we have presented a new technique for
genetic programming and the evolution of Turing-
complete programs for a register machine. The tech-
nique has a number of attractive properties. The use
of register machines and binary string representation
enables the use of the lowest level language of the pro-
cessor in a computer system, resulting in a speed en-
hancement of the genetic programming system by a
factor of 1500 compared to implementations in an in-
terpreting language. The memory requirements are
low and constant during evolution of both the kernel
and the population. A population of a million indi-
viduals can reside in 40MB of RAM memory, and the
kernel only needs 30KB. We believe that this new ge-
netic programming technique could be of use to ex-
pedite the emergence of new real-life application areas
and open up research in new domains.

Acknowledgments

The authors would like to thank John Koza, and
Walter Tackett for the use of their GP systems,
from the GP-archive. Thanks also to Sami Khuri
for valuable comments to this paper. This research
has been supported by the Ministry for Wissenschaft

*The variation in the CGPS seemed to be depending on
the frequency of multiplication instruction in the solutions.

und Forschung (MWTF) of Nordrhein-Westfalen, under
grant I-A-4-6037.1 .

References

J. Koza (1992) Genetic Programming, Cambridge,
MA: MIT Press.

N.L. Cramer (1985). A representation for adaptive
generation of simple sequential programs. In Proceed-
ings of an International Conference on Genetic Al-
gorithms and Their Applications, pp183-187

J.P Nordin (1994) A Compiling Genetic Programming
System that Directly Manipulates the Machine-Code.
In Advances in Genetic Programming, K. Kinnear, Jr.

(ed.), Cambridge, MA: MIT Press.

W.A. Tackett (1994) Recombination, Selection and the
Genetic Construction of Computer Programs. Disser-

tation, Faculty of the Graduate School, UCLA, CA.

S. Brave (1994) Evolution of a Recursive Program for
Tree Search Using Genetic Programming. Stanford
University, Stanford, CA.

