
Energy-Efficient Data Aggregation Hierarchy for Wireless Sensor Networks

Yuanzhu Peter Chen Arthur L. Liestman Jiangchuan Liu∗

School of Computing Science
Simon Fraser University

8888 University Drive, Burnaby, British Columbia, Canada
{yzchen, art, jcliu}@cs.sfu.ca

Abstract

A network of sensors can be used to obtain state-based
data from the area in which they are deployed. To reduce
costs, the data, sent via intermediate sensors to a sink, is of-
ten aggregated (or compressed). This compression is done
by a subset of the sensors called aggregators. Since sen-
sors are usually equipped with small and unreplenishable
energy reserves, a critical issue is to strategically deploy an
appropriate number of aggregators so as to minimize the
amount of energy consumed by transporting and aggregat-
ing the data.

In this paper, we first study single-level aggregation and
propose an Energy-Efficient Protocol for Aggregator Selec-
tion (EPAS). Then, we generalize it to an aggregation hier-
archy and extend EPAS to a Hierarchical Energy-Efficient
Protocol for Aggregator Selection (hEPAS). We derive the
optimal number of aggregators with generalized compres-
sion and power-consumption models, and present fully dis-
tributed algorithms for aggregator deployment. Simulation
results show that our algorithms significantly reduce the en-
ergy consumption for data collection in wireless sensor net-
works. Moreover, the algorithms do not rely on particular
routing protocols, and are thus applicable to a broad spec-
trum of application environments.

1 Introduction

A wireless sensor network is a collection of sensors in-
terconnected by wireless communication channels. Each
sensor node 1 is a small device that can collect data from
its surrounding area, carry out simple computations, and
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1We assume that each sensor node has only one sensor, and hence, in
the rest of this paper, sensor and sensor node are used interchangeably [28]

communicate with other sensors or with the controlling au-
thorities of the network. Long distance communications are
achieved in a multi-hop fashion. Such networks have been
realized due to recent advances in micro-electro-mechanical
systems and are expected to be widely used for such appli-
cations as environment monitoring, intrusion detection, and
earthquake warning [28].

In many of these applications, the data to be collected is
state-based, that is, it consists of measurements of ambient
surroundings. Significant redundancies often exist in such
data due to spatial-temporal correlations. These local re-
dundancies can be removed prior to sending the over-sized
raw data to the sink and draining the limited sensor energy
store. This process, referred to as data aggregation or data
fusion, is quite attractive as it is often infeasible or costly to
replenish the batteries of the deployed sensors.

It is worth noting, however, that the amount by which
the data size may be reduced by aggregation depends on
the application. For example, simple statistical values such
as sum, mean or deviation, can be easily aggregated into
a single scalar or vector. On the other hand, a tempera-
ture map of a region would allow more limited reduction.
For example, a wavelet scheme separately computes the
wavelet transform for each subregion first, and then merges
the resulting wavelet coefficients of subregions to obtain the
wavelet transform of the entire region. Here, the number of
wavelet coefficients of a subregion may increase as does the
number of sensors therein.

In this paper, we investigate energy-efficient aggregator
deployment in wireless sensor networks. A unique fea-
ture of our study is that we consider a general compres-
sion model for data aggregation, which is more realistic
than the infinite compression [11, 3, 18] allowed in previ-
ous studies. We begin by using only a single level of ag-
gregation. With this restriction, we calculate the number
of aggregators needed to minimize the amount of total en-
ergy consumed in the network. A practical Energy-efficient
Protocol for Aggregator Selection (EPAS) is presented to
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achieve the target number of aggregators. Next, we demon-
strate that multiple levels of aggregation can further reduce
energy consumption. EPAS is then extended to hEPAS (Hi-
erarchical EPAS) to provide a multiple level solution. We
give fully distributed algorithms for aggregator deployment
in the above protocols, which are applicable to a broad spec-
trum of state-based data collection applications in sensor
networks.

The performance of these algorithms are examined by
experiments. Our results demonstrate that EPAS conserves
energy consumed both by the entire network and by the
most heavily loaded sensors. The energy consumption can
be further reduced by using hEPAS. The number of levels in
the hierarchy is also a critical factor, and our results provide
a general guideline toward desirable settings of the aggre-
gation levels.

The remainder of this paper is organized as follows. In
Section 2, we provide some background and review related
work. An energy-efficient protocol for aggregator selection
(EPAS) for one-level data aggregation is presented in Sec-
tion 3. In Section 4, we generalize EPAS to accommodate
aggregation hierarchies, called hEPAS. The performance of
these protocols is examined in Section 5. Finally, Section 6
concludes the paper and offers some future research direc-
tions.

2 Background and Related Work

Wireless sensor networks have received much attention
due to the number of potential applications of this tech-
nology. Many data communication protocols have been
proposed lately, such as DD [12], TAG [16], TTDD [25],
GRAB [26], Pilot [15], LEACH [11], and LAF [20]. Re-
cent surveys by Akkaya and Younis [1], by Akyildiz et al.
[2], and by Tilak, Abu-Ghazaleh and Heinzelman [23] in-
clude information on these and other protocols. There are
three types of data collection in sensor networks. Event-
based data, such as intrusion detection or object tracking,
is collected when an event at a particular venue within the
deployment region occurs. The event is confirmed by de-
tecting sensors using local consensus and reported to the
control authority [6, 19]. Focused state-based data is col-
lected in response to a query sent to selected sensors re-
questing relevant data [12, 26]. Global state-based data,
such as temperature or humidity, is collected by sensors all
over the deployment area and transmitted to the sink [17].
Our interest here is in global state-based data.

Bhardwaj, Garnett, and Chandrakasan [4] provided an
upper bound on the lifetime of sensor networks that are en-
gaged in event detections. In their model, the energy con-
sumed for a node to relay (that is, to receive and transmit)
a unit of data to another node at distance d is denoted by
α1 + α2d

l, where α1 and α2 depend on the hardware im-

plementation of the sensors and l is the path attenuation ex-
ponent (usually in the range 2 ≤ l ≤ 4). The distance
from one sensor to the next that minimizes the energy con-
sumed is the characteristic distance, denoted dchar, where
dchar = l

√

α1

α2(l−1) . This value depends only on the hard-

ware design specifications and the environment.
For state-based data collection, Heinzelman, Chan-

drakasan and Balakrishnan [11] presented a clustering al-
gorithm (LEACH) to aggregate the data from sensors. In
LEACH, each sensor becomes a clusterhead with a fixed
probability during startup and every non-clusterhead sensor
joins the cluster of a nearest clusterhead. The clusterheads
act as aggregators. As clusterheads are likely to consume
more energy than non-clusterheads, LEACH allows rotation
of clusterhead status. Alternatively, unequal-sized clusters
can be used to balance the sensor energy consumption [21].

Mhatre and Rosenberg [18] consider two types of nodes:
regular sensors (type 0) and more powerful sensors (type
1) that can serve as clusterheads. Their work focuses on
determining the numbers of type-1 sensors in a single ag-
gregation level. A hierarchical clustering algorithm is pro-
posed by Bandyopadhyay and Coyle [3]. In their model,
they calculate the number of aggregators in each level for
energy conservation. Clustering sensors and mobile ad hoc
nodes, in general, has been an intensively studied area, see
[5, 6, 7, 8, 13, 22, 24, 27].

Our hierarchical aggregator selection protocol (hEPAS)
is motivated by these studies. In particular, Bandyopadhyay
and Coyle [3] show that the use of a hierarchical structure
can help conserve energy. However, we consider a more
realistic compression model, and propose a general hierar-
chical framework to minimize the total energy consumed by
both communication and aggregation.

3 One Level Aggregation

We begin by allowing only one level of data aggregation.
Sensor nodes are partitioned into clusters, each with a clus-
terhead. The sensors within each cluster periodically send
their data to the clusterhead. The clusterhead compresses
the data collected from all members and sends the aggre-
gated data to the sink. We first construct an ideal model,
where the sensors and the aggregators are uniformly dis-
tributed over the region. Then we present a distributed algo-
rithm, EPAS, to select the aggregators under practical con-
straints.

3.1 System Model and Notations

We first state our assumptions and introduce some nota-
tion to be used. A summary list of the notation used in this
paper is given in Table 1.
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Symbol Meaning

a Radius of the network deployment region
ai Radius of a level i cluster
b Coverage radius of an aggregator
c Data compression overhead

dchar Characteristic distance, l

√

α1

α2(l−1)

Ea Energy consumed by aggregating data in a single
cycle in single-level context

Eai Energy consumed by aggregating data in a single
cycle in level i

Eci Energy consumed by transporting data from
level i to level i + 1 in a single cycle

fa(·) Aggregation energy consumption function
g(·) Data compressibility function

h Number of levels in the hierarchy
k Number of aggregators in single-level context
ki Number of aggregators in level i
l Propagation loss exponent
n Number of sensors in the network
r Sensor data rate
ri Level i aggregator data rate
α1 Circuit energy consumption coefficient
α2 Antenna energy consumption coefficient

α
α1+α2dl

char

dchar

β Aggregation energy consumption coefficient
γ Data compression ratio

Table 1. List of notation.

Consider a network of n sensors uniformly distributed
over a region. Many large-scale sensor networks such as
environment monitoring sensors dropped from aircraft have
this property [2, 28]. Route calculation is carried out during
the initial setup after the aggregators (clusterheads) are se-
lected, and the sensors send packets to their respective clus-
terheads using multi-hop paths (if necessary). Each hop in
these paths is roughly of characteristic distance dchar [4].
That is, each node forwards the data to a node that is ap-
proximately dchar closer to the destination.

We assume that data collection is synchronized by cy-
cles, where each cycle consists of a round of data collection,
transmission, and aggregation. During each cycle, sensors
collect data. The data generated is then sent to the aggre-
gator as a packet of r bits. Each aggregator compresses the
data it receives from the sensors of its cluster and then for-
wards the data to the sink. We assume that, by relaying
packets via hops of the characteristic distance, transporting
one unit of data a distance d consumes α×d units of energy,

where α =
α1+α2dl

char

dchar

[4]. That is, to send one unit of data

a distance one requires the sender to expend α2d
l
char units

of energy to transmit the message. The sender and receiver

together use a total of α1 units of energy internally.
We use a general function g(x) to represent the data com-

pressibility at aggregators. Basically, g(x) gives the data
volume after compression as a function of the input data
volume x. When g(x) is a constant, this is the infinite com-
pression assumed in many of the previous studies [11, 3].
We use fa(x) to denote the energy consumed by compress-
ing x data units. This is generally proportional to x but
need not be. Although in practice the energy consumed by
compressing a unit of data may be significantly less than
that consumed by transmitting it (see [28]), we include this
cost in our model for completeness, e.g., to accommodate
advanced algorithms like Wavelet compression [28].

3.2 Optimal Number of Aggregators

We would like to determine the number of clusterheads
(aggregators) that minimizes the total energy consumed by
transmitting and aggregating data under our model. For
simplicity, we assume that the sensors are deployed in a cir-
cular region A of radius a meters with the sink located at
the center of the circle. Our solution can be easily extended
to accommodate other region shapes or sink locations.

Let Ec0 denote the total energy consumed by all of the
sensors sending data to their respective aggregators in a
single cycle. Consider the area covered by cluster C cen-
tered at (xc, yc). The total distance that the data pack-
ets travel from all members of C to (xc, yc) is n

πa2 ×
∫∫

(x,y)∈C

√

(x − xc)2 + (y − yc)2 dxdy, where n
πa2 is the

sensor density.
If each sensor chooses the closest aggregator as its clus-

terhead, the sensors essentially form a Voronoi diagram
of the network region where each cluster corresponds to a
Voronoi cell. For large k, a typical cluster can be approx-
imated as a circle of radius a√

k
[14] 2 with the aggregator

at the center. With this, the above expression evaluates to
2an

3k
3
2

. Thus, after factoring in the α coefficient to obtain the

energy consumption, the sensor data rate r, and summing
over the k aggregators, we have

Ec0 =
2αanr

3k
1
2

. (1)

Let Ea denote the total energy consumed by data aggre-
gation in a single cycle. Since the aggregator receives data
at an average rate of nr

k
bits per cycle, we have

Ea = k × fa

(nr

k

)

. (2)

Let Ec1 denote the total energy consumed by all of the
aggregators sending this data to the sink in a single cycle.

2More details on the problem of covering geometric spaces with
spheres can be found in Conway and Sloane [10].
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Since the data is sent by an aggregator at a rate of g
(

nr
k

)

bits per cycle and the aggregator density is k
πa2 , we have

Ec1 = g
(

nr
k

)

×α× k
πa2×

∫∫

(x,y)∈A

√

x2 + y2 dxdy, which
evaluates to

Ec1 = g
(nr

k

)

×
2kαa

3
. (3)

Summing up Equations (1), (2) and (3), we have

2αanr

3k
1
2

+ k × fa

(nr

k

)

+ g
(nr

k

)

×
2kαa

3
. (4)

Consider a typical circuit power-consumption model
where the aggregation energy consumption is proportional
to the volume of the data to be compressed, that is, fa(x) =
βx, for some constant β. Also consider a typical linear com-
pression model, g(x) = γx + c, where γ (0 ≤ γ ≤ 1) is
the compression ratio and c is the compression overhead
[9]. It follows that the number of aggregators that mini-
mizes the energy consumption of the network in a single

cycle (that is, Equation (4)), is k =
(

nr
2c

)
2
3 . Substituting

g(x) = γx + c into Equation (3), we see that the energy
consumed by transporting the data from k aggregators to
the sink is proportional to nrγ + ck. Thus, the contribution
of γ to the value of Equation (3) (and (4)) is independent of
k.

Thus, to minimize energy consumption, there should be
(

nr
2c

)
2
3 aggregators. This conclusion also applies to the spe-

cial case of β = 0, that is, where the energy required to
compress data is negligible (as assumed in many existing
sensor systems [28]).

3.3 Distributed Aggregator Selection – EPAS

In this section, we propose a practical Energy-Efficient
Protocol for Aggregator Selection (EPAS) that follows our
optimal solution in the previous subsection.

EPAS is a randomized and fully distributed algorithm
that consists of two phases. In the first phase, each sensor
chooses to be a clusterhead (aggregator) with probability
p1 independently for some p1 ∈ [0, k

n
]. Suppose that each

clusterhead has a fixed coverage radius ofb meters. (See
Section 3.4 for discussion of determining the value of b.) In
the second phase, each sensor that is not within the coverage
radius of some clusterhead declares itself to be a clusterhead
with probability p2.

By careful choice of p1 and p2, we can ensure that the
expected number of aggregators is k. To do that, we lever-
age the following propositions.

Lemma 1 After phase 1 of EPAS, the probability that a sen-

sor c is not covered is (1−p1)
(

1 − p1b2

a2

)n−1

, where p1 is

the phase-1 selection probability, and b and a are the cov-
erage and network region radii, respectively.

Proof. Let X be a random variable denoting the num-
ber of sensors other than c that are contained in a cir-
cle of radius b centered at c. Thus, we have Prob[X =

i] =

(

n
i

)

(

b2

a2

)i (

1 − b2

a2

)n−i−1

, for i = 0, 1, . . . , n−1.

Further, (1−p1)
X is a random variable indicating the prob-

ability that c is not covered by any selected clusterhead after
phase 1. Its expected value is

E

h

(1 − p1)
X

i

=
n

X

i=0

(1 − p1)
i
× Prob[X = i]

=
n

X

i=0

(1 − p1)
i

„

n

i

« „

b2

a2

«i „

1 −

b2

a2

«n−i−1

=

„

1 −

p1b2

a2

«n−1

.

This is also the probability that c is not covered by any se-
lected clusterhead. Factoring in the probability that c does
not select itself, we have the expected probability that sen-

sor c is not covered: (1 − p1)
(

1 − p1b2

a2

)n−1

. �

For the expected number of clusterheads generated by
EPAS to be k, the selection probabilities of the two phases
should satisfy the following condition.

Theorem 2 The expected number of clusterheads gener-
ated by EPAS is k iff p1 and p2 are chosen such that

p1 + p2(1 − p1)
(

1 − p1b2

a2

)n−1

= k
n
.

Proof. Let random variable Y denote the number of clus-
terheads generated by EPAS. Let binary random variable Yi

be 1 if and only if sensor ci (i = 1, 2, . . . , n) becomes a
clusterhead. Thus we have E[Yi] = E[Y ]

n
= k

n
. Let binary

random variables Yi,1 and Yi,2 denote the fact that ci be-
comes a clusterhead in phases 1 and 2, respectively. Since
the events that ci becomes a clusterhead in either phase are
mutually exclusive, we have

E[Yi] = Prob[Yi = 1]

= Prob[(Yi,1 = 1) ∪ (Yi,2 = 1)]

= Prob[Yi,1 = 1] + Prob[Yi,2 = 1]

= E[Yi,1] + E[Yi,2].

We know that E[Yi,1] = p1. In addition, we have
E[Yi,2] = p2 × Prob[c is not covered in phase 1]. Based
on Lemma 1, we have Prob[c is not covered in phase 1] =

(1 − p1)
(

1 − p1b2

a2

)n−1

. As a result, we have k
n

=

E[Yi,1] + E[Yi,2] = p1+ p2(1 − p1)
(

1 − p1b2

a2

)n−1

. �

After phase 2, the expected number of aggregators is k.
Each sensor that is not an aggregator selects the closest ag-
gregator as its clusterhead. Thus, the clusters essentially
form a Voronoi partitioning of the network.
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3.4 Discussion

Given the number of sensors, deployment area, compres-
sion ratio, characteristic distance, and other network param-
eters, we can calculate the optimal number of aggregators
k. Given this target number of aggregators, we can choose
appropriate probabilities p1 and p2 offline. After deploy-
ment, the sensors select k aggregators. Each of the aggre-
gators broadcasts its status to all sensors within coverage

radius b. For large k, k circles of radius b =

√

3
√

3
2π

a√
k
≈

1.0996 × a√
k

can cover the entire region of area πa2 [14].

We use a larger coverage radius b = 2a√
k

to ensure that most
of the sensors are within the coverage radius of at least one
aggregator while keeping the broadcast radius small. In
Section 5, we report on a set of experiments to determine
how many sensors lie outside the coverage areas for k ag-
gregators with coverage radius b = 2a√

k
.

4 Hierarchical Aggregation

We now consider a more general framework that orga-
nizes the aggregators in a hierarchy. We begin with all sen-
sors in level 0 of the hierarchy. From those sensors, we
select a subset as aggregators for level 1. From the level 1
aggregators, we select a subset to act as level 2 aggregators.
Similarly, we select a subset of the aggregators at each level
to act as aggregators at the next higher level. Finally, the
sink (which may not be an aggregator of any of the other
levels) is the only aggregator of level h + 1.

Once the aggregation hierarchy is established, sensors
collect data and send it to the nearest level 1 aggregator.
The level 1 aggregators collect this data from their sensors,
aggregate it, and forward it to the nearest level 2 aggregator.
This process continues until the level h aggregators forward
the data to the sink.

In this section, we modify the method of Section 3 to de-
termine the optimal number of aggregators in each level of
the hierarchy. Then we extend EPAS to hEPAS, its hierar-
chical version.

4.1 Optimal numbers of aggregators in the hier-
archy

We denote the number of aggregators in level i by ki

(i = 0, 1, ..., h + 1). Note that k0 = n and kh+1 = 1. The
data is sent out of a level i aggregator to its clusterhead at a
rate of ri bits/cycle and r0 = r. As before, the data com-
pression rate is described by function g(·).We assume that
aggregators in each level are distributed uniformly. That is,
a level i aggregator receives data from ki−1

ki

level (i − 1)

aggregators. The data rate ri can be expressed as:

ri =

{

r if i = 0

g
(

ri−1 ×
ki−1

ki

)

i = 1, 2, . . . , h.

Let Eai be the total energy consumed by the compres-
sion done by all of the aggregators of each level i in a single

cycle. We have Eai = ki × fa

(

ki−1

ki

× ri−1

)

.

We now consider Eci, the total energy consumed by
transporting data from level i aggregators to level (i + 1)
aggregators (i = 0, 1, . . . , h) in a single cycle. As be-
fore, a typical level (i + 1) cluster C can be approxi-
mated with a circle of radius ai+1 = a/

√

ki+1, centered
at (xc, yc), and the density of the level i aggregators is
ki

πa2 . The portion of Eci within this cluster is ri × α ×
ki

πa2×
∫∫

(x,y)∈C

√

(x − xc)2 + (y − yc)2 dxdy = 2αakiri

3k
3
2
i+1

.

Therefore, summing over the ki+1 level (i+1) clusters, we
have Eci = 2αakiri

3k
1
2
i+1

.

Thus, the total energy consumed in a single cycle is

h
∑

i=1

Eai +

h
∑

i=0

Eci, (5)

which is a function of the ki.
Given values of r, a, α, γ and c for a particular sys-

tem, the values of ki minimizing the above total energy con-
sumption can be calculated. These values can then be used
to configure the aggregator selection protocol.

4.2 Hierarchical EPAS

Here, we propose a Hierarchical Energy-Efficient Pro-
tocol for Aggregator Selection (hEPAS). We assume that
the optimal number of aggregators in each level i is ki

(i = 1, 2, . . . , h) as calculated above. The protocol selects
an expected ki sensors as the level i aggregators. hEPAS
executes for h iterations. Each iteration is similar to EPAS
(Section 3.3). During iteration i, a level (i − 1) aggrega-
tor chooses to become a level i aggregator with probability
pi ∈ [0, ki

n
] in the first phase. Each chosen aggregator has

a coverage radius of b = 2a√
ki

. In the second phase, a level
(i−1) aggregator that is not covered by any level i aggrega-
tor chooses to become a level i aggregator with probability
p2, where p1 and p2 satisfy the condition described in The-
orem 2 for k = ki. After the aggregators of all levels are
chosen, each level i aggregator (i = 0, 1, . . . , h) joins the
cluster of the nearest level (i + 1) aggregator.

5 Performance Evaluation

We evaluate the performance of EPAS and hEPAS
through simulations using our custom simulator. We first
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investigate the energy consumption versus the number of
aggregators in the single-level case in order to understand
the effectiveness of EPAS. Then we study the energy saving
gained by adding more levels to the aggregation hierarchy.

Parameter Value

Number of sensors n 10000
Network radius a 1000 m

Communication circuit power α1 5 × 10−8 J/bit
Communication antenna power α2 1 × 10−10 J/bit/m2

Propagation loss exponent l 2
Characteristic distance dchar 22.36 m

Aggregation energy consumption rate β 5 × 10−8 J/bit
Sensor data rate r 160 bits/sec

Data compression ratio γ 25%
Data compression overhead c 32 bits

Table 2. System specifications.

In the simulation, we use a network of 10000 sensors
uniformly deployed in a circular region of radius 1000 me-
ters. The system specifications we use are similar to those
used by Heinzelman, Chandrakasan and Balakrishnan [11]
and by Mhatre and Rosenberg [18] (see Table 2). We as-
sume that the sensors sample the environment every minute.
This differs slightly from the assumptions in these previous
paper but is reasonable for our application. The measured
values are converted to 16-bit digital representations and a
single cycle lasts for 10 minutes. Therefore, the sensor data
rate is 160 bits/cycle.

The regions served by the aggregators of each level form
a Voronoi diagram of the overall network region. In the
single level EPAS protocol, each aggregator compresses the
data collected from sensors located within its Voronoi cell
and sends it to the sink at the center of the region. To mit-
igate the impact of inefficient routing, we assume an ide-
alized routing protocol, Characteristic Distance Progressive
Routing (CDPR), to approximate straight-line routing [4].
In CDPR, when a packet intended for node d is at node s
with dist(s, d) > dchar, it is forwarded to an intermediate
node v1 that is the closest to the target point t, a point on the
line segment (s, d) at distance dchar from s. The packet is
forwarded one step at a time until it reaches node vi within
distance dchar of d from which it is forwarded to d directly.

Our next goal is to choose a suitable value of p1, and thus
that of the corresponding p2, that leaves few sensors uncov-
ered after EPAS. To do this, we fix k and n, select a cov-
erage radius b, and then, using various appropriate values
of p1, simulate the placement of the sensors and the choice
of aggregators using that value of p1. For each simulation,
we count the number of uncovered sensors. In particular,
we then assume that there are 10000 sensors and we choose
the expected numbers of aggregators k to be 25, 100, 400,
or 1600. Having fixed k, we use the coverage radius b =

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
er

ce
nt

ag
e 

of
 u

nc
ov

er
ed

 s
en

so
rs

 (
%

)

Selection probability

k=25
k=100
k=400

k=1600

Figure 1. Uncovered sensors vs phase-1
probability.

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0  500  1000  1500  2000  2500  3000

T
o
ta

l 
E

n
e
rg

y
 C

o
n
s
u
m

e
d
 (

J
)

Number of aggregators

Total

 4

 5

 6

 7

 8

 9

 10

 0  500  1000  1500  2000  2500  3000

M
a

x
im

u
m

 E
n

e
rg

y
 C

o
n

s
u

m
e

d
 (

m
J
)

Number of aggregators

Maximum

Figure 2. Single-level energy consumption.

2×1000√
k

. For the above values of k, this gives b = 400, 200,
100, and 50 meters, respectively. We consider each value of
p1 such that p1/(k/n) = 0.05i, where i = 0, 1, 2, . . . , 20.
Figure 1 shows the percentage of sensors not covered by
any aggregator for each choice of p1/(k/n). That is, the
percentage of sensors not covered by any aggregator varies
as p1 does. Moreover, the fewer uncovered sensors, the bet-
ter an aggregator’s Voronoi cell can be approximated by a
circle. Thus, choosing p1/(k/n) ∈ [0.7, 0.8] should yield
the fewest uncovered sensors. For subsequent experiments,
we use 0.75 as the value for p1/(k/n) and obtain the value
of p2 from Theorem 2.

We now measure the energy consumed in a single cycle
of the data collection assuming a single level of aggregation.
We fix the number of aggregators, select them, and then
simulate the collection of data at each sensor, transmission
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Figure 3. Hierarchical energy consumption.

of the data to the aggregators, aggregation of the data, and
transmission of the aggregated data to the sink. For each
simulation, we compute the maximum energy consumed by
an individual sensor in the network. That is, if the sensor
is not an aggregator, we count the energy needed to trans-
mit its data to the aggregator and any energy used to forward
other data during the cycle. For aggregators, we also include
the cost of aggregation. In addition to determining the max-
imum of these costs, we also compute the total of these costs
over all sensors. In the experiments, we again assume that
we have 10000 sensors. We choose the number of aggrega-
tors to be a value 100j, where j = 1, 2, . . . , 30. Figure 2
shows the resulting maximum energy consumption and total
energy consumption values. The total energy consumption
appears to be minimized when the number of aggregators
is between 800 and 900. Note that the value predicted by
Equation (3) is 855. The maximum energy consumption is
minimized when the number of aggregators is between 450
and 500 and is reasonably small for the range between 300
and 1000. Our experiments show that these most heavily
loaded nodes are generally located near the aggregators or
the sink. Such nodes are required to transport large amounts
of data since the data is being concentrated at the aggrega-
tors and the sink.

We now consider whether additional energy savings can
be achieved by instituting a hierarchical structure for the
aggregators using the hEPAS protocol as described above.
In an h-level hierarchy, we have calculated the number of
aggregators ki at each level i of the hierarchy that minimize
the total energy consumption in an ideal situation. This total
is given by Equation (5) and we can calculate the values of
ki that achieve this minimum. Table 3 shows the values of
ki for h levels where 1 ≤ h ≤ 10 with a total of 10000 sen-
sors deployed. We performed some experiments for h-level
hierarchies where 1 ≤ h ≤ 10 using the computed values ki

shown in the table. In each experiment, we used the hEPAS
protocol to select ki aggregators at each level i and then
measured the energy consumed by each sensor, recording
both the maximum for any sensor and the total consumed
by all sensors. For each choice of h, we performed 1000
experiments. The averages of these values over all of the
experiments for each h are shown in the two plots in Fig-
ure 3. The ideal values from Equation (5) are included in the
lower plot (which shows the total energy consumed). From
these experimental results, we conclude that for 10000 sen-
sors, the best choice would be to use a hierarchical solution
with 5 levels. Note that the experimental results are reason-
ably close to the ideal values, which indicates that our ideal
scenario is a good model of the actual situation.

6 Conclusion

In this paper, we studied the energy consumed in wire-
less sensor networks in which some sensors can aggregate
the data. In particular, we considered one scenario that al-
lowed a single level of aggregation assuming a general com-
pressibility function. we calculated the number of aggre-
gators needed to minimize the amount of total energy con-
sumed in the network. A practical Energy-efficient Protocol
for Aggregator Selection (EPAS) was presented to achieve
the target number of aggregators.

We then considered a more general scenario with multi-
ple levels of aggregation, and extended EPAS to its hierar-
chical version, hEPAS. We gave fully distributed algorithms
for aggregator deployment in the above protocols, which are
applicable to a broad spectrum of state-based data collection
applications in sensor networks.

We performed a series of experiments, measuring energy
consumption in networks with different numbers of levels
and aggregators at each level. Overall, our experiments
show that both the total energy consumption and the max-
imum energy consumption among sensors are significantly
reduced by employing the proposed protocols.

This work can be extended in a number of different ways.
For example, we can better balance the energy consumption
among nodes by the use of mobile aggregators. We may
also consider the problem of aggregator selection for sensor
networks with heterogeneous nodes.
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