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ABSTRACT

A Mobile Ad Hoc Network (MANET) is an infrastructureless wireless network that
can support highly dynamic mobile units. The multi-hop feature of a MANET suggests
the use of clustering to simplify routing. Graph domination can be used in defining
clusters in MANETs. A variant of dominating set which is more suitable for clustering
MANETs is the weakly-connected dominating set. A cluster is defined to be the set of
vertices dominated by a particular vertex in the dominating set. As it is NP-complete
to determine whether a given graph has a weakly-connected dominating set of a partic-
ular size, we present a zonal distributed algorithm for finding small weakly-connected
dominating sets. In this new approach, we divide the graph into regions, construct a
weakly-connected dominating set for each region, and make adjustments along the bor-
ders of the regions to produce a weakly-connected dominating set of the entire graph.
We present experimental evidence that this zonal algorithm has similar performance to
and provides better cluster connectivity than previous algorithms.

Keywords: Zonal algorithm; Ad hoc network; Clustering; Weakly-connected dominating
set.

1. Introduction and Related Work

1.1. Preliminaries

A mobile ad hoc network is a type of infrastructureless wireless communication

network, that requires only subscriber units to form the network. Ad hoc networks

can involve a great number of mobile subscriber units, each with a transmission
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range that is small relative to the network size. Each subscriber unit can only com-

municate directly with other subscriber units that are within range. For users that

are not within range to communicate, other subscriber units must relay messages.

Thus, subscriber units may be able to communicate even though they may not be

within their mutual transmission ranges.

The conventional pre-calculated routing algorithms for wired communication

networks are not readily applicable to ad hoc networks since the subscriber units

are mobile and the network topology is continuously changing. In wired networks,

the network structure is mostly static and link failure is not frequent. In con-

trast, ad hoc networks allow higher mobility which permits rapid topology changes.

Thus, pre-calculated routing information can become stale quickly. Routes must be

calculated much more frequently to maintain the same response level as in wired

networks. Royer and Toh have a very good survey on the routing algorithms for

ad hoc networks [18]. Broch, et al. present a more experiment-oriented view of the

comparison of the routing protocols in ad hoc networks [6].

In large MANETs, route calculation can be expensive. To simplify routing, it

may be convenient to confine the routes to a substructure of the network. Informally

a routing scheme can be such that a “local” message is sent on short paths, while

a “long-distance” message travels a longer distance. Only a subset of the vertices

are knowledgeable about routing. When a vertex not in that subset wishes to send

a message, it first sends the message to a neighbor that is in the subset. From this

vertex, the message can either be sent directly to its destination (local) or routed

to another knowledgeable vertex within one hop of the destination and from there

to the destination (long-distance). If the number of knowledgeable vertices is small,

route calculation in the substructure will not be expensive.

One way to realize this local/long-distance notion is to introduce clustering. A

cluster is a connected subnetwork usually with small diameter. We partition the

vertices into clusters and select the edges of a spanning subgraph. The clusters

along with the selected edges form the substructure of the network that we will

use for routing. In fact, multiple layers of this kind of routing can be used, giving

a hierarchical solution. In the majority of the clustering literature, a subset of

the vertices of the graph are designated as clusterheads. Each clusterhead is the

representative of its cluster and is responsible for calculating the routes for long-

distance messages and forwarding inter-cluster packets.

Calls from any source vertex are first directed to its clusterhead. If the desti-

nation is in the same cluster (a local call), the clusterhead simply forwards the call

to the destination. Otherwise, (for a long-distance call) the clusterhead routes the

call, within the substructure, to the clusterhead associated with the destination,

which will in turn forward it to the destination.

To simplify routing, we want the number of clusters generated for a given net-

work to be as small as possible.

It is natural to represent an ad hoc network by a graph G = (V, E) where

the vertices represent the individual subscriber units and there is an edge between

two vertices if the corresponding subscriber units are within range of each other.



Each edge is given a weight which is the distance between the corresponding sub-

scriber units. A dominating set of a graph G = (V, E) is a vertex subset S ⊆ V ,

such that every vertex v ∈ V is either in S or adjacent to a vertex of S. A ver-

tex of S is said to dominate itself and all adjacent vertices. A dominating set

can also be independent, called independent dominating set, in which no two ver-

tices are adjacent. A connected dominating set (CDS) of a given graph G is a

dominating set whose induced subgraph is connected. Another variation is the

weakly-connected dominating set. The subgraph weakly induced by S (S ⊆ V ) is

the graph 〈S〉w=(N [S], E ∩ (N [S] × S)). 〈S〉w includes the vertices in S and all of

their neighbors as the vertex set. The edges of 〈S〉w are all edges of G which have

at least one end point in S. A vertex subset S is a weakly-connected dominating

set (WCDS), if S is dominating and 〈S〉w is connected. In general, one wishes to

find the smallest possible dominating set, independent dominating set, connected

dominating set, or weakly-connected dominating set of a graph for use in clustering

MANETs. Unfortunately, the decision versions of the dominating set, independent

dominating set, connected dominating set, and weakly-connected dominating set

problems in general graphs are all NP-complete [10, 12]. Haynes, Hedetniemi and

Slater present a detailed survey of the area of domination in graphs [17].

1.2. Related Work — Clustering MANETs

One class of existing clustering algorithms is based on independent dominating

sets of graphs. An independent set of a graph is a subset of the vertex such that no

two vertices in this subset are adjacent. Gerla and Tsai [14] proposed two weight

based clustering algorithms, using node ID and node degree for weights respectively.

A vertex with optimal weight (lowest node ID or highest node degree, respectively)

within its neighborhood is a clusterhead. The neighborhood of a clusterhead is

a cluster. These algorithms are localized since a vertex only needs to know the

information of 1-hop neighbors. Chen and Stojmenovic [7] proposed a clustering

algorithm using both degree and ID. Basagni [4] generalized the weight idea such

that any meaningful parameter can be used as the weight in order to best exploit

the network properties.

Maintaining clusters as the topology changes is an issue that arises in ad hoc

networks. A local change in weights may result in a different vertex becoming a

clusterhead. If we insist on independent dominating sets, when two clusterheads

become adjacent, one of them has to abdicate. All these local cluster maintenance

may cause other changes to propagate through the network. This is commonly

referred to as the chain effect [13].

Connected dominating sets are often used to determine clusterheads in MANETs.

Guha and Khuller [16] proposed centralized approximation algorithms for finding

small connected dominating sets in arbitrary connected graphs, which have asymp-

totically optimal approximation ratios of O(lg ∆), where ∆ is the maximum vertex

degree of the input graph. Das and Bharghavan [9] provided distributed implemen-

tations of these algorithms, and applied them to ad hoc networks. These distributed

algorithms have exactly the same approximation ratios as their centralized coun-



terparts, since they utilize central coordinators to oversee the entire execution, but

the computation is not localized. To address the problem of non-localized computa-

tion, Wu and Li presented a localized distributed algorithm in [20] for finding small

connected dominating sets, in which each node only needs to know the information

of vertices within two-hop distance. The execution time is O(∆3). However, the

algorithm by Wu and Li does not guarantee a good approximation ratio. It was

shown by Alzoubi et al. [19] that the approximation ratio for this algorithm can be

as large as n
2
, where n is the number of nodes in the network.

Alzoubi, Wan and Frieder [1, 2, 3, 19] proposed a series of results on heuristics

for finding small connected dominating sets in Unit Disk Graphs (UDGs). In [1, 3,

19], Alzoubi et al. proposed two distributed algorithms for finding small connected

dominating sets to construct the virtual backbone of ad hoc networks (modeled with

UDGs) with approximation ratios of 8 and 12 respectively. Although the algorithms

proposed in [1, 3, 19] are distributed, they are not localized. In [2], Alzoubi et al.

proposed a localized distributed heuristic. In this algorithm, the approximation

ratio can be bounded by 192.

The weakly-connected dominating set was first proposed for clustering ad hoc

networks by Chen and Liestman [8], The non-localized approximation algorithms in

[8] were shown to find weakly-connected dominating sets consistently smaller than

the connected dominating sets found by the algorithms of Guha and Khuller [16].

In this paper, we present a zonal distributed algorithm to find a small weakly-

connected dominating set of the input graph G = (V, E). The graph is first par-

titioned into non-overlapping regions. Then a greedy approximation algorithm is

executed to find a small weakly-connected dominating set of each region. Taking

the union of these weakly-connected dominating sets we obtain a dominating set

of G. Some additional vertices from region borders are added to the dominating

set to ensure that the final dominating set of G is weakly-connected. Intuitively,

this algorithm should have a good approximation ratio due to the computation of

weakly-connected dominating sets in the regions. Note that although this algorithm

is for finding weakly-connected dominating sets, minor modifications can be made

to extend to find a small connected dominating set.

Section 2 describes the partitioning of the graph into regions. Section 3 presents

a zonal algorithm for finding small weakly-connected dominating sets in the regions.

The border fixing phase is investigated in Section 4. Experiments and results are

presented in Section 5.

2. Graph partitioning using minimum spanning forests

In this section, we concentrate on the first phase of our zonal distributed clus-

tering algorithm — the process of partitioning a given graph G = (V, E) into non-

overlapping regions. This is done by growing a spanning forest of the graph. At

the end of this phase, the subgraph induced by each tree defines a region. We

adopt the commonly used model in which a sender v of degree d(v) can broadcast

to its neighbors in constant time with O(d(v)) messages. A vertex can also send a

message to any adjacent vertex in constant time.



Our algorithm for this phase is based on an algorithm of Gallager, Humblet,

and Spira [11] that is based on Kruskal’s classic centralized algorithm for Minimum

Spanning Tree (MST), an iterative greedy algorithm. We assume that all edge

weights are distinct, breaking ties using the vertex IDs of the endpoints. The MST

is unique for a given graph with distinct edge weights. The algorithm maintains

a spanning forest. Initially, the spanning forest is a collection of trees of single

vertices. At each step the algorithm merges two trees by including an edge in the

spanning forest. During the process of the algorithm, an edge can be in any of the

three states: tree edge, rejected edge, or candidate edge. All edges are candidate

edges at the beginning of the algorithm. When an edge is included in the spanning

forest, it becomes a tree edge. If the addition of a particular edge would create

a cycle in the spanning forest, the edge is called a rejected edge and will not be

considered further. In each iteration, the algorithm looks for the candidate edge

with minimum weight, and changes it to a tree edge merging two trees into one.

During the algorithm, the tree edges and all the vertices form a spanning forest.

The algorithm terminates when the forest becomes a single spanning tree. This

greedy algorithm finds the optimal solution, i.e., the MST.

Gallager, Humblet, and Spira [11] presented an asynchronous distributed algo-

rithm, called the GHS algorithm, for finding the MST in a graph. In their algorithm,

vertices in the graph grow their own tree in the spanning forest in parallel. Each tree

in the spanning forest is called a component. Initially, every vertex is a component

by itself. The central idea of the GHS algorithm is that each component locates

its minimum weight outgoing edge, an edge of minimum weight which connects the

component to some other component. Each vertex PROBEs each of its neighbors

to see if the edge connecting them is an outgoing edge. The root of a component

collects the weights of all outgoing edges to locate the minimum weight outgoing

edge, and attempts to merge using the minimum weight outgoing edge. Some re-

strictions are applied during the merge process to guarantee balanced growth among

components. The algorithm terminates when no outgoing edge can be found for any

component, which means that the MST has been found.

Our partitioning process consists of a partial execution of the GHS algorithm,

which terminates before the MST is fully formed. We control the size of components

by picking a value x. Once a component has exceeded size x, it no longer partici-

pates. In particular, it will not send or accept PROBEs. We call such a component

full. Since every merge joins two components of size of no more than x, the size of

a full component is at most 2x. Note that a component that has not exceeded the

threshold size by the time that all of the surrounding components become full may

be of size x or less. To implement this size control, the root of each component keeps

track of the number of vertices in its component. When the size x is exceeded, the

root broadcasts a FULL message to all vertices of the component. Having received

the FULL message, a vertex refuses the PROBEs from any neighbor.

The threshold size x provides a mechanism to control the tradeoff between the

locality of the algorithm and size of the output weakly-connected dominating sets.

When x is small, the algorithm is fairly localized and its behavior is similar to that



of the localized algorithms for connected dominating sets of Wu and Li [20] and of

Alzoubi, et al. [2]. When x is large, the algorithm is not as localized but tends to

produce smaller weakly-connected dominating sets, as we will see in Section 5. The

selection of the value of x is a problem of interest. The threshold size x can be preset

to a particular value before the network is setup, if the scale and behavior of the

network is relatively predictable. In particular, the value of x may be determined

by the size of the network, the density of the nodes, and the locality requirements of

the administrator. Experiments can be used to fine tune the value given the above

parameters.

In the future, we plan to develop algorithms for maintaining the cluster structure

as the network changes. In this case, the value of x will also need to be changed

dynamically. However, this is beyond the scope of this paper.

Note that in the centralized greedy algorithm and the original GHS algorithm

for MST, the spanning forest maintained at any time is part of some MST. This

condition does not necessarily hold after adding the size control, since a component

only considers edges leading to non-full components when locating the minimum

weight outgoing edge. But this modification is acceptable as our goal is simply to

partition a graph into regions using some spanning forest with the size control. We

do not strictly require a minimum spanning tree.

To calculate the costs of the partitioning phase, let mi denote the number of

edges incident on the vertices within component i. The time complexity to form

this component using the modified GHS algorithm is O(x log x) and the message

cost is O(mi + x log x). (See the analysis of Gallager, Humblet and Spira [11].)

Therefore the total time required is the same as that of each individual component,

O(x log x), and the message cost is the sum over all the components, O(m+n log x).

The threshold number x is a variable used to control the approximate size of each

partition. As x increases, the partitions become larger which, intuitively, allows a

smaller weakly-connected dominating set, as we can run the asymptotically optimal

approximation algorithm (as we will see in next section) within larger partitions of

the graph.

In principal, any distributed algorithm for constructing spanning trees can be

modified for use here. Among algorithms for minimum spanning trees, the GHS al-

gorithm does not have optimal time or message costs. However, the GHS algorithm

is localized during the early stages of its execution and thus is easy to extend to

our problem. Further, using a minimum spanning tree algorithm with edge weights

obtained from subscriber unit distance (rather than an arbitrary spanning tree algo-

rithm) tends to give us spanning trees of smaller heights and thus regions of smaller

diameters.

3. Computing Weakly-Connected Dominating Sets of the Regions

Once the graph G is partitioned into regions and a spanning tree has been

determined for each region, we run the following algorithm within each region.

This color-based algorithm is a distributed implementation of the centralized greedy

algorithm for finding small weakly-connected dominating sets in graphs (see [8]). We



begin by describing the centralized greedy algorithm. We then describe a distributed

implementation and its regional version.

The centralized algorithm (previously presented by Chen and Liestman [8]) is

based on Algorithm 2 of Guha and Khuller [16]. Given a graph G = (V, E), we

associate a color (white, gray, or black) with each vertex. All vertices are initially

white and change color as the algorithm progresses. The algorithm is essentially an

iteration of the process of choosing a white or gray vertex to dye black. When any

vertex is dyed black, any neighboring white vertices are changed to gray. At the

end of the algorithm, the black vertices constitute a weakly-connected dominating

set.

The term piece is used to refer to a particular substructure of the graph. A

white piece is simply a white vertex. A black piece contains a maximal set of black

vertices whose weakly induced subgraph is connected plus any gray vertices that

are adjacent to at least one of the black vertices of the piece. The improvement of a

(non-black) vertex u is the number of distinct pieces within the closed neighborhood

of u. That is, the improvement of u is the number of pieces that would be merged

into a single black piece if u were to be dyed black.

In each iteration, the algorithm chooses a single white or gray vertex to dye

black. The vertex is chosen greedily so as to reduce the number of pieces as much

as possible until there is only one piece left. In particular, a vertex with maximum

improvement value is chosen (with ties broken arbitrarily). The black vertices are

the required weakly-connected dominating set S.

Let OPT denote a minimum size weakly-connected dominating set for G and

let ∆ denote the maximum degree of G. We can bound the size of the WCDS found

by this algorithm as follows (see also [8]):

Theorem 1 The size of the weakly-connected dominating set found by the above

centralized algorithm is at most (ln ∆ + 1) · |OPT |.

Proof. Let u1 be an arbitrary vertex of OPT . As u1 is of degree at most ∆,

at most ∆ + 1 distinct vertices can be dominated by u1 (including u1 itself). As

OPT is a weakly-connected dominating set of G, there must be another element

of OPT at distance at most 2 from u1. Let u2 be such a vertex. As at least one

vertex in u2’s closed neighborhood is also in the closed neighborhood of u1, at most

∆ new distinct vertices are dominated by u2. Again, as OPT is a weakly-connected

dominating set of G, there must be another element of OPT at distance at most

2 from either u1 or u2. This vertex, called u3, dominates at most ∆ new distinct

vertices. We repeat this argument until we have included all |OPT | elements of

OPT . Thus, G can contain at most n ≤ (∆+1)+∆(|OPT |−1) vertices. It follows

that |OPT | ≥ n−1

∆
.

In each iteration of the algorithm, we dye a vertex black and put it in set S.

Observe that the improvement value of any vertex is monotonically non-increasing

over time. At the start of the algorithm, the improvement of every vertex u is

one more than its degree. When a neighboring vertex is colored black, u becomes

gray and its improvement decreases by at least one. When a neighboring vertex is

colored gray, u’s improvement may decrease but will not increase. When u is dyed
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Fig. 1. Greedy scenario.

black, it no longer has an improvement value.

Let ai be the number of pieces left after the ith iteration and let a0 = n. Consider

the i + 1st iteration. Since the addition of the (non-black) vertices of OPT would

join all of the remaining ai pieces, decreasing the number of pieces by ai − 1, there

is at least one non-black vertex of OPT which would decrease the number of pieces

by at least d ai−1

|OPT |e.

Figure 1 depicts the situation after 2 iterations on the given graph. In the figure,

the five circled vertices are a minimum weakly-connected dominating set (OPT ). At

this point, one vertex u in OPT has already been dyed black. Picking the remaining

4 vertices of OPT would join the remaining a2 = 10 pieces. Therefore, our greedy

algorithm is guaranteed to decrease the number of pieces at least by d a2−1

|OPT |e = 2

in the 3rd iteration.

This gives us the recurrence relation,

ai+1 ≤ ai − d
ai − 1

|OPT |
e ≤ ai(1 −

1

|OPT |
) +

1

|OPT |
.

Solving it, we get the following bound:

ai+1 ≤ a0(1 −
1

|OPT |
)i+1 +

1

|OPT |

i∑

j=0

(1 −
1

|OPT |
)j

= (a0 − 1)(1 −
1

|OPT |
)i+1 + 1

Letting i + 1 = |OPT | · ln a0−1

|OPT | , we have:

ai+1 ≤ (a0 − 1)(1 −
1

|OPT |
)i+1 + 1

= (a0 − 1)(1 −
1

|OPT |
)|OPT |·ln

a0−1

|OP T | + 1

≤ (a0 − 1)(
1

e
)ln

a0−1

|OP T | + 1



= (a0 − 1) ·
|OPT |

a0 − 1
+ 1

= |OPT | + 1

That is, after |OPT | · ln a0−1

|OPT | iterations, the number of pieces remaining is at

most |OPT |+1. For each additional vertex we choose, we will decrease the number

of pieces by at least one. Thus, we need only pick at most |OPT | additional vertices

to reduce the number of pieces to one. The total number of vertices that we choose

is no more than |OPT | · ln a0−1

|OPT | + |OPT |. Since |OPT | ≥ n−1

∆
, the solution found

by our algorithm has at most |OPT | · (ln ∆ + 1) vertices. 2

The above algorithm grows its weakly-connected dominating set S by including a

globally optimal vertex for each iteration. In order to achieve the same performance

ratio in the distributed scenario, the following algorithm uses a special vertex to

determine the global optimum.

To implement the distributed algorithm, we build a rooted spanning tree within

the network and use the tree root as the arbitrator. The root starts an iteration by

broadcasting a request throughout the network along the tree edges to search for

the vertex with the maximum improvement value. The result is convergecast back

to the root along the tree edges (with ties broken arbitrarily). Once the root has

determined the global maximum, it sends a message to that vertex to color it black.

The route for this message can be found in the convergecast search result.

This algorithm generates the same weakly-connected dominating set as its cen-

tralized counterpart on any input graph. Excluding building the spanning tree, the

distributed algorithm can be done in O(|V | × |S|) time with O(|V | × |S|) messages.

Note that if the spanning tree is balanced, i.e. the depth of the tree is on the

order of the graph diameter Diam(G), then the running time can be reduced to

O(Diam(G) × |S|).

To compute weakly-connected dominating sets for each region, we simply run

the above distributed algorithm within each region, ignoring the edges to other

regions, using the spanning tree of the region defined during the partitioning phase.

For a given region, the root broadcasts a request throughout the region along the

spanning tree edges to search for the vertex with maximum improvement value.

The result is convergecast back to the root along the tree edges (with ties broken

arbitrarily). Once the root has determined the maximum improvement value of the

region, it sends a message to the chosen vertex to color it black. After the new

vertex is colored black, pieces are merged and we are ready for the execution of the

next iteration. This regional version of the algorithm is terminated when there is

only one piece in the region.

This algorithm can be run in any region Ri in time O(x × |Si|), using O(x ×

|Si|) messages, where Si is the weakly-connected dominating set produced by Ri.

Therefore, within the entire graph, the total time is O(x×|Smax|) and the message

cost is O(n × |Smax|), where Smax is the largest weakly-connected dominating set

produced by all regions.
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4. Fixing the Borders

After we have calculated a small weakly-connected dominating set Si for each

region Ri of G, combining these solutions does not necessarily give us a weakly-

connected dominating set of G. We will likely need to include some additional

vertices from the borders of the regions in order to obtain a weakly-connected

dominating set of G.

The edges of G are either dominated (that is, they have either endpoint in some

dominating set Si) or free (in which case neither endpoint is in a dominating set).

Two regions Ri and Rj joined by a dominated edge can comprise a single region

with dominating set Si ∪ Sj , and do not need to have their shared border fixed.

The root of region R can learn, by polling all the vertices in its region, which

regions are adjacent and can determine which neighboring regions are not joined

by a dominated edge. For each such pair of adjacent regions, one of the regions

must “fix the border”. To break ties, we assume that the region with lower region

ID takes control of this process, where the region ID is the vertex ID of the region

root. In other words, if neighboring regions Ri and Rj are not joined by a shared

dominated edge, the region with the lower subscript adds a new vertex from the

Ri/Rj border into the dominating set.

For example, in Figure 2, the five regions have weakly-connected dominating

sets indicated by the solid black vertices. Region R1 is adjacent to regions R2, R3,

R4, and R5. Among these, regions R2 and R3 do not share dominated edges with

R1. As R1 has a lower region ID than either R2 or R3, R1 is responsible for fixing

these borders. The root of R1 adds u and v into the dominating set. R2 is adjacent

to two regions, R1 and R3, but it is only responsible for fixing the R2/R3 border,

due to the region IDs. The root of R2 adds w to the dominating set.

A detailed description of this process for a given region R follows. The goal is

for the root r to find a small number of dominated vertices within R to add to the

dominating set.

Assume that every vertex knows the vertex ID, color, and region ID of all of its

neighbors. (This can be done with a single round of information exchange.) Root
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r collects the above neighborhood information from all of the border vertices of R.

We define a problem region with regard to R to be any region R′ that is adjacent

to R, does not share dominated edges with R, and has a higher region ID than R.

Region R is responsible for fixing its border with each problem region.

We construct a bipartite graph B(X, Y, E) using the collected information for

root r. Vertex set X contains a vertex for each problem region with regard to R,

and vertex set Y contains a vertex for every border vertex in R. There is an edge

between vertices yi and xj iff yi is adjacent to a vertex in problem region xi in

the ordinal graph. Figure 3 shows the bipartite graph constructed by region R1 in

the example of Figure 2. In this bipartite graph, X = {R2, R3} and Y = {u, y, v}.

In this case, {u, v} is a possible solution for R1 to add to the weakly-connected

dominating set in order to fix its borders with R2 and R3. To find the smallest

possible set of vertices to add to the dominating set, r must find a minimum size

subset of Y to dominate X .

The decision version of this problem is equivalent to the dominating set problem

in split graphs, which is NP-complete (see [15] for definition of split graph and

[5] for NP-completeness result). As an optimal solution is not likely, we use a

greedy procedure to find an approximate solution. In each iteration of this greedy

procedure, we remove a maximum degree vertex from Y . Since the calculation for

each region is done by the region root, the time and message costs are those by

the polling process, i.e. a broadcast and a convergecast along the tree edges of the

spanning tree of each region. Both costs can be bounded by O(x) given the size of

regions are within O(x). Therefore, the time and message costs for the entire graph

are O(x) and O(n), respectively.

After the root of each region has executed the above algorithm, the resulting

dominating set is a weakly-connected dominating set of the entire graph G.

5. Simulation

At the point, we have not been able to obtain a theoretical bound on the size of

the weakly-connected dominating set produced. Therefore we have done simulations

to determine the quality of this zonal distributed algorithm for finding small weakly-

connected dominating sets, measuring the dominating set size, the path length, and

the network capacity. We compare this algorithm to the non-localized distributed

algorithm from Section 3 and to Das and Bharghavan’s algorithm for connected

dominating sets [9].

To measure the performance of our zonal algorithm, we consider three parame-



ters. First we consider the size of the dominating set produced. Since our goal is to

find a small weakly-connected dominating set, we prefer smaller values for this pa-

rameter. The second parameter that we are interested in is the average path length,

that is, the average pairwise vertex distance. In each of the clustered graphs, we

compute these distances using only the edges in subgraph weakly induced by the

dominating set. Small increases of this parameter are expected, as some edges in

the clustered graph are removed. The third parameter is the average number of

edge-disjoint paths between pairs of vertices. This parameter measures, in some

sense, the capacity of the network. As we delete edges, we expect that this value

will decrease, but we do not wish it to decrease too much.

Originally we planned to include the localized algorithms of Wu and Li [20] and

of Alzoubi, et al. [2] in our comparison, but our preliminary experiments showed that

for our data set these localized algorithms produced much larger dominating sets

than the non-localized distributed algorithm of Das and Bharghavan [9]. Therefore,

in this paper we focus on comparing our algorithm with the non-localized distributed

algorithm presented by Chen and Liestman [8] and that by Das and Bharghavan

[9].

In our experiment we generate random graphs repeatedly and run our zonal al-

gorithm, the non-localized distributed algorithm from Section 3, and the connected

dominating set algorithm [9], measuring the above three parameters. The random

graphs have expected average degree of 6 and 12, providing two levels of density.

The size of the graphs ranges from 20 to 200 vertices and 40 to 200 vertices, respec-

tively. To simulate the structure of ad hoc networks, we place vertices (subscriber

units) randomly in a rectangular area in a 2D-plane. The coordinates of the vertices

are chosen uniformly in each dimension. We assign each subscriber unit a trans-

mission range according to a normal distribution centered at a predefined expected

value. When two subscriber units are placed within range of each other, an edge is

added between the vertices simulating a reliable link between them. By changing

the number of vertices in the plane and the expected transmission range, one can

adjust the network size and density.

For each pair of number of vertices and expected degree, we generated 100

random graphs to test the algorithms. In order to investigate the influence of the size

of the regions on the performance of the algorithm, we configured the experiment

to run with parameter x set to the values 10, 20, 40, 80 and 160. Given the sizes of

the graphs in our simulations (up to 200), values 20 and 80 represent two typical

locality levels, and these are the results presented in this paper. Intuitively, when

x = 20, the algorithm behaves more locally. In particular, with average degrees

either 6 or 12, we could expect the region diameter to be 4 or less. Raising the

threshold to 80, we would expect the region diameter to be closer to 6. As the

region diameter increases, the locality of the algorithm decreases and it begins to

behave more like the non-localized algorithm of [8].

Figures 4 and 5 show the size of the weakly-connected dominating sets pro-

duced by the zonal algorithm with region parameter x set to 20 and 80 (LOC-

20 and LOC-80, respectively) and by the non-localized algorithm from Section 3



(WCDS), and size of the connected dominating sets produced by the CDS algo-

rithm, Algorithm II of [9], (CDS). Connected dominating sets are generally denser

than weakly-connected dominating sets for the same graph, so we expect the size

of connected dominating sets produced by the CDS algorithm to be larger than

the others. In Figure 4, where the expected degree is 6, we can see that when

the regions contains approximately 80 vertices (LOC-80) the size of the weakly-

connected dominating set produced by the zonal algorithm is just slightly larger

than that produced by the non-localized algorithm (WCDS). For smaller regions

(LOC-20), the size of the dominating set is again larger, but still smaller than the

size of the connected dominating sets (CDS). In Figure 5 the expected degree is

12. The difference from Figure 4 is that when using small regions (LOC-20), the

size of the weakly-connected dominating sets is larger than that of the connected

dominating sets (CDS), though LOC-80 is still smaller than CDS. In this case, we

believe that the graph is fragmented by small regions because the threshold size is

not much larger than average degree.

Figures 6 and 7 display the average path length in the original graph (Original),

that in the graph clustered by weakly-connected dominating sets produced by the

zonal algorithm (LOC-20 and LOC-80), that in the graph clustered by weakly-

connected dominating sets produced by the non-localized algorithm (WCDS), and

that in the graph clustered by the connected dominating sets produced by the CDS

algorithm (CDS). In both Figures 6 and 7, we can see that LOC-20 and LOC-80

yield a smaller average path length than WCDS. Especially, for small regions (LOC-

20), the path length in the graph clustered by weakly-connected dominating sets

as sparser dominating sets, is even smaller than that in the graph clustered by the

connected dominating sets.

Figures 8 and 9 show the average number of edge-disjoint paths in the origi-

nal graph (Original), that in the graph clustered by weakly-connected dominating

sets produced by the zonal algorithm (LOC-20 and LOC-80), that in the graph

clustered by weakly-connected dominating sets produced by the non-localized al-

gorithm (WCDS), and that in the graph clustered by the connected dominating

sets produced by the CDS algorithm (CDS). In both Figures 8 and 9, we can see

that LOC-20 and LOC-80 have a larger average number of edge-disjoint paths than

WCDS (WCDS). Again counter-intuitively, for small regions (LOC-20), the average

number of edge-disjoint paths in the graph clustered by weakly-connected dominat-

ing sets is smaller than that in the graph clustered by the connected dominating

sets.

6. Conclusion

We presented a zonal distributed algorithm for finding small weakly-connected

dominating sets for use in clustering MANETs. The algorithm consists of three

phases: partitioning, regional WCDS, and border fixing. We first partition the in-

put graph into regions of sizes approximately x using a modified GHS algorithm for

constructing spanning forests. Then the distributed algorithm for weakly-connected

dominating sets is executed in each region. In the last phase, some additional ver-
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tices from region borders are added in order to obtain a weakly-connected dominat-

ing set of the graph. The execution time of this algorithm is O(x(log x+|Smax|)) and

it generates O(m + n(log x + |Smax|)) messages, where Smax is the largest weakly-

connected dominating set generated by all regions and can be trivially bounded

by O(x) from above. This zonal algorithm is regulated by a single parameter x,

which controls the size of regions. When x is small, the algorithm finishes quickly

with a large weakly-connected dominating set. When it is large, it behaves more

like the non-localized algorithm and generates smaller weakly-connected dominating

sets. Experiments were designed to test the quality of this zonal algorithm. Com-

parisons are made to the non-localized algorithm for weakly-connected dominating

sets and the algorithm for finding small connected dominating sets.
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