
Delay-Tolerant Networks with Network Coding:
How Well Can We Simulate Real Devices?

Yuanzhu Chen, Xu Liu
Wireless Networking and Mobile Computing Laboratory

Department of Computer Science
Memorial University of Newfoundland

Canada

Walter Taylor and Jason H. Moore
Computational Genetics Laboratory

Giesel School of Medicine
Dartmouth College

USA

Abstract—Delay-tolerant networking effectively extends the
network connectivity in the time domain, and endows com-
munications devices with enhanced data transfer capabilities.
Network coding on the other hand enables us to approach the
information capacity of networks by allowing intermediate nodes
to process data en route. Both of these were major principal
breakthroughs in mobile and wireless communications in the
past decade or so. As reported in this article, we are interested
in how network coding battles such challenged networks as
DTN from an experimental perspective. We conducted tests with
both real smart mobile devices and computer simulation and
found conditions where their results match. This would give us
confidence of using computer simulation to study larger delay-
tolerant networks with and without network coding at a much
manageable cost.

I. INTRODUCTION

Data communication networks connect computing devices
with wired or wireless links to exchange information. For such
networks to scale as the number of devices in it increases,
we allow messages to traverse multiple communication links
from its source node to the destination. Such a “store and
forward” technique is the central idea of how the Internet can
support numerous of computers. This effectively extends the
scope of communication networks spatially. Recently, research
on Delay-Tolerant Networking (DTN) [1], [10], [12], [23]
has been exploring how to extend communication networks
temporally. As mobile devices and networking technologies
become more powerful and efficient, such mobile devices can
be used to “store, carry, and forward” data when users roam
about. That is, even without cellular or Wi-Fi infrastructure
and only relying on short-range radios, e.g. Bluetooth and
ZigBee, a set of sparsely deployed mobile devices can be used
to transfer data automatically especially when the data are not
required to be time-sensitive. The DTN technology can be
useful in many scenarios, such as mobile sensor networks,
disaster recovery, social networking, etc.
The concept of network coding was formulated in the

seminal work of Ahlswede, Cai, Li, and Yeung [5] in 2000,
and the past decade has seen a tremendous momentum in
this area [17]. Its idea breaks away from the principal of
traditional multi-hop networking, where intermediate nodes
only forward packets but do not modify their contents, much
like cars traveling on a highway. Since bits are not cars

anyway, network coding allows intermediate nodes to combine
packets from different input ports before forwarding them.
When treating a packet as a sequence of symbols, even
linear network coding defined over small Galois fields can
introduce a fairly significant throughput gain. The readers
are referred to an easy-to-read and yet informative primer
by Fragouli, Le Boudec, and Widmer [9]. Other benefits of
network coding include improved robustness of network oper-
ations, higher energy efficiency in wireless radios, and better
security against eavesdroppers. Network coding proves to be
especially powerful and flexible, and can be exercised along
with other revolutionary networking paradigms. For example,
it was shown that opportunistic data forwarding in multi-
hop wireless networks can further increase the capacity of
these networks when intermediate nodes strategically combine
overheard packets and forward them [6], [21]. As another
example, the resilience to lost or delayed information brought
about by network coding turns out particularly effective in
DTNs, as evidenced by computer-simulated experiments in
Widmer and Le Boudec [20] and in Lin, Li, and Liang [13].
In this work, we evaluate how network coding stacks against

conventional message passing in DTNs using both real iOS
devices and in the ONE simulator in a university building. Our
goal is to assess to what extent the ONE as one of the best
and most widely used simulators for DTN research can mimic
the real world. On one hand, we used real Apple iOS devices
to measure how message propagate among roaming users over
the built-in Bluetooth radios. On the other hand, we enhanced
the ONE with a more realistic link layer by adding a few
parameters. We are able to claim that the simulator work fairly
closely to iOS devices with these parameters tuned properly.
As part of a bigger research project, we may be confident that
the simulator can work in place of real devices for efficient
studies of larger-scale networks.
The rest of this article is organized as follows. Next section,

we provide background in some relevant experimental research
on DTN and network coding in this context. In Section III,
we describe how message passing is done with and without
network coding. We conducted experiments using both real
devices and computer simulation. The experimental settings
and results are reported in Section IV. Section V concludes
this article with discussion and future research issues.

IEEE ICC 2014 - Wireless Communications Symposium

978-1-4799-2003-7/14/$31.00 ©2014 IEEE 5819



II. BACKGROUND

While researchers in data communications have been on a
quest for the ultimate killer applications of the DTN tech-
nology [15], there have been a number of small but interest-
ing experimental applications in infrastructureless computer
networking, such as IPN [3], Haggle [2], ZebraNet [11],
DieselNet [22], and iSNAC [7], to name a few. Among these,
iSNAC is a mobile social networking iPad application that
focuses on broadcasting messages to help conference attendees
to share information effectively.
Network coding is shown in Widmer and Le Boudec [20]

and in Lin, Li, and Liang [13] to be very effective in battling
the intermitted connectivity in DTNs while assuming neither
do nodes have information about future encounters nor are
they able to derive this information from past history. They use
a custom computer simulator to compare the packet delivery
ratio and delay between non-network-coding DTN forwarding
and using random network coding. Their simulation indicates
that network coding outperforms DTN forwarding for various
network density levels and mobility patterns even when the
latter is allowed to use very intelligent beaconing. In addition
to experimental results, the latter [13] also provides some nice
performance bounds analytically.
In our experiments, we used the Bluetooth radios on Apple

iOS devices to form a DTN. Apple provides the Bluetooth
communication capabilities through a set of wrapping classes
in the GameKit Framework. Although this framework was
originally designed for infrastructureless peer-to-peer gaming,
it is essentially an API for devices to send generic data among
one another over Bluetooth radios. The API provides reliable
and unreliable link layer data services between one-to-one
and one-to-many devices. We picked the unreliable, one-to-
many variant in our experiments. Each invocation of data
transmission is allowed to send up to 90KBytes of payload. If
the upper layer modules need to send more data, they must first
be segmented into smaller chunks. The API was not known
to handle rapid connections and disconnections well, so there
can be delay in a device detecting another device coming into
range, and links may break occasionally when they are busy.
Nevertheless, these characteristics of GameKit provides us a
perfect vehicle to study the effect of network coding in such
an extreme and yet practical scenario.
The ONE (Opportunistic Network Environment) [4] is a

discrete-event computer simulator for DTN research. It was
written in Java and made open-source for the research commu-
nity. The ONE implements a number of well known message
passing methods in DTN, such as Epidemic Routing [19],
Spray and Wait [18], PROPHET [14], etc. It has a large
number of hooks to customize behaviors of these protocols
and for us to add network coding to it. The simulator supports
mobility in a topological structure in addition to traditional
free-space 2D mobility. This allows us to specify how users
move around in an experiment area easily. The ONE uses a
simple link layer model with a binary circular transmission
area. Given a set transmission radius, two nodes have reliable

communication if they are within range; otherwise, they cannot
hear from each other. Apparently, such an idealized link layer
model would be unrealistic. We modified the link layer by
adding delays in connection establishment and probabilistic
link breaks with parameters set similarly to what we saw in
the GameKit so that the ONE could faithfully simulate iOS
devices.

III. STORE, CARRY, AND FORWARD/CODE
In this work, we are interested in the problem of disseminat-

ing messages from a particular source to all other nodes in the
network. We focus on a DTN, where a set of sparsely deployed
nodes roam around without assuming any predictability. Each
node periodically injects a message into the network intended
to all other nodes. The strategies that a node employs depend
on whether network coding is used. Without network coding,
two nodes transfer messages via a handshake protocol. With
network coding, a node simply randomly mixes the packets it
has received so far and send these random combinations to an
encountered peer.

A. Message prioritization without network coding
When not using network coding, we take a similar approach

to Epidemic Routing [19] in that, when two nodes come into
range of each other, one node can transfer a number of mes-
sages to the other via a 3-way handshake sequence. However,
the difference here is that we must pick thoughtfully which
messages to include in a short advertisement packet such that
the system has a high overall throughput. Specifically, when
node A discovers node B in its transmission range, it sends a
summary vector SVA. In the original Epidemic Routing, SVA

contains the unique IDs of all the message that A stores in its
knowledge base. In our solution, it needs to be a small subset
of these messages because there can be many of them after the
network has been up running for some time. After receiving
SVA, node B replies with SVA −MB , where MB is the set
of all messages stored at node B. As such, node B essentially
tells A which messages from A would potentially enrich B’s
knowledge of messages. Next, node A retrieves messages in
SVA −MB from its storage and sends them to B in a burst
to complete the handshake. If the two nodes are still within
range τ seconds after the handshake, they will start another
round of handshake to transfer more messages. Similarly, node
B would do the same to its neighbors periodically.
Given that nodes typically store more messages than that

can fit in a single handshake packet, the strategy taken as of
which messages should be in the advertisement and in what
order affects the network performance significantly. We call
such a strategy message prioritization, and some preliminary
research on this scheme is reported in our previous article [16].
To reiterate, we are interested in a few simple, and yet very
different such methods. In all methods, we assume that node
A fills the advertisement packet with l digests (l = 10 in our
experiments) created out of some of its stored messages.
1) Round robin — Node A maintains a FIFO queue of the
messages it has received and generated so far, i.e. by the

IEEE ICC 2014 - Wireless Communications Symposium

5820



time it is injected into the network. It circulates through
the queue to compile the message digests using a pointer.
When it is about to initiate a handshake, it processes
l messages and advance the pointer accordingly. Here,
the node maintains separate pointers for different nodes.
Note that as the network continues to operate, the time
it takes to finish a round becomes longer, and when it
does, it starts from the head of the queue again.

2) Tiered — Messages stored at a node are ranked accord-
ing to three quantities to favor new, short messages,
i.e. forward history, age, and length, in a decreasing
order of significance. The fewer times it has been
forwarded till reaching this node A, the later it was
created by its origin, and the shorter its payload is, it
is ranked higher in the storage queue. These ranked
messages are split into three segments of about the same
number of messages, the upper, middle, and lower tiers.
Three separate round-robin schedules are executed on
the tiers. The upper tier has three opportunities to send
an advertisement containing l digests of its own, the
middle tier has two, and the lower tier has one. Thus,
the system helps newly injected message spread in the
network more quickly.

3) Oblivious — Node A maintains a FIFO queue of all
messages by the time they are injected into the network
as in Round robin. When the node needs to create an
advertisement packet, it simply takes the last l messages
in the queue. In this method, the node never looks back
after it has past a message in the queue, thus, always
rigidly favoring the latest messages in the network.

In addition to the three above, we also implemented a random
prioritization method as a comparison baseline, where node A
would randomly pick l messages and advertise their digests.
All four methods are essentially different ways to allocate
opportunities to messages to be advertised in the network.

B. With network coding
In random network coding, when a set of packets are

combined and sent by an intermediate node, both the com-
bined message (i.e. the information vector) and how they are
combined (i.e. the encoding vector) are to be included as being
transmitted [9]. The dimensionality of the information vector
is simply the number of symbols in the message content,
say M , while the dimensionality of the encoding vector,
denoted m, is the maximum number of original messages
that can be combined. Apparently, when a packet is sent,
m + M symbols are transmitted. The greater m is, a higher
percentage of communication capacity is consumed by such
a coding overhead. When a packet is received by a node,
it is inserted in its decoding matrix. Depending on whether
the packet is innovative, the rank of the decoding matrix
may or may not increase by 1. In any case, the rank of the
matrix can be up to m, and is usually in that ballpark in a
stable network. Because matrix operations on general-purpose
processors can be expensive, a large value of m also implies
a large computational overhead. Thus, for practical purposes,

we can divide packets into non-overlapping generations and
only allow packets of the same generations to be combined as
in Chou, Wu, and Jain [8]. By tuning the size of a generation,
we can control the communication and computation overhead.
Widmer and Le Boudec [20] show that the generation size
is a crucial parameter for the performance in their simulated
studies of DTNs.
In this research, we set the generation size G = 50 globally

in our tests. Provided we have n = 10 devices, every device
contributes 5 messages to each generation. Specifically at any
given time, for device i (i = 1, 2, . . . , n), its jth message
(j = 1, 2, . . . , g for some latest generation g) belongs to gen-
eration "j/5# of the network. In addition, this message takes
dimension i× (n− 1)+ (j mod 5) in that generation. During
the operation of the network, a node would have generated and
received packets of various generations. We use Pk to denote
the set of packets of generation k, where k = 1, 2, . . . , g.
Thus, collectively, we use P = {P1, P2, P3, . . . , Pg} to
denote the generations of packets stored at said node. When
a node is within range of any peer, it periodically (every
τ = 15 seconds in our experiments) generates a set of
random combinations of the packets it has received so far and
broadcasts them to its neighbors. These packets are generated
as follows. For generation k (k = 1, 2, 3, . . . , g), it creates
max

{

w ×
RPk

2g−k , 1
}

random combinations of all packets in
this generation, where w is a parameter to control the overall
load on the radio, and RPk

is the rank of the decoding matrix
corresponding to the kth-generation packets Pk . That is, each
generation contributes at least one random packet combination.
In addition, when w = 1, the latest generation g contributes
random combinations of at most its rank, the second latest
generation g − 1 contributes up to half of its rank, generation
g − 2 a quarter, and so on. Once created, these packets are
broadcast in the neighborhood with the latest generation first
and earliest generation last. Apparently, the greater w is,
the more packets are broadcast periodically, the larger the
communication overhead of the protocol is, and the higher
the network throughput may be. Essentially, the purpose of
such a weight allocation among generations is to boost the
late generations with sufficient initial presence in the network
for them to propagate through.

IV. EXPERIMENTS
We conducted experiments both on a set of 10 Apple iOS

devices and in the ONE simulator. These experiments were
designed for the same scenario in part of the Engineering
Building on campus of Memorial University of Newfoundland.
The 10 mobile users follow some prescribed paths in the
building in a 30-minute iteration. The users are divided into
three groups of 3, 3, and 4 devices, respectively. Each group
has a “base” in the building, as numbered in Figure 1. During
the test, a user from a group leaves his/her base, walks along
the path, for example as depicted in the figure, makes a stop at
the other two bases for about a minute each, and returns to the
base. Subsequently, the next user in the group would repeat
the same routine. Users of different groups follow slightly

IEEE ICC 2014 - Wireless Communications Symposium

5821



different paths, especially in opposite directions in certain
segments, so that they can meet users of other groups en route.
These routines were intended to mimic both grouped and
individual mobility patterns in an academic setting, and were
used both in real-device and simulated tests. The simulator
was programmed to have the same mobile groups and mobility
patterns.

Fig. 1. Path of a mobile user

A. Real-device
To have a heterogeneous network, we used a set of different

iOS devices because there is no interoperability between iOS
and Android OS over Bluetooth with GameKit. Their model,
processor clock, Bluetooth version, and quantity are listed in
Table I.

Model SoC and CPU cores Bluetooth version Quantity
iPod touch 4 A4, 1@0.8GHz 2.1 1
iPhone 4 A4, 1@1.0GHz 2.1 1
iPad 2 A5, 2@1.0GHz 2.1 2
iPod touch 5 A5, 2@1.0GHz 4.0 2
iPad mini A5, 2@1.0GHz 4.0 3
iPad 4 A6X, 2@1.4GHz 4.0 1

TABLE I
IOS DEVICES USED IN EXPERIMENTS

We tested the network-coding-based broadcast against the
other four forwarding-based approaches, each in a separate
iteration. During an iteration, a devices generates a message
every 90 seconds. The messages are randomly coded and
sent every 15 seconds (Section III-B) or selectively advertised
as digests every 15 seconds (Section III-A). For the case of
network coding, we set the generation size to 50 messages, i.e.
5 messages per device per generation. To have about the same
link layer data load across these five different methods, we
are particularly interested in setting the generation allocation
weight w to 0.5. When w = 0.5, we were able to keep the

data sending rate at about 25kbps and receiving rate at about
50kbps across the board. (Note that we are using a broadcast
service from the API, so there is no conservation of data
flow.) Relevant parameters are summarized in Table II. We
recorded when messages were decoded (for network coding)
and received (for non network coding) on each device. At
the end of the test, these logs were uploaded to a server for
centralized synthesis and post-processing.

Parameter Value
number of nodes in network n 10

total simulation time T 1,800 seconds
node mobility model walk along prescribed paths

message generate rate per device t every 90 seconds
message length s 4,000 bytes

number of digests advertised l 10 messages
size of network coding generation G 50 messages
interval of digest advertisement τ every 15 seconds

interval of coded packets broadcast τ every 15 seconds
generation allocation weight w 0.5, 1, 2

TABLE II
PARAMETERS OF DEVICE TESTS

We are interested in how widely messages are disseminated
in the network, measured in extent, which is somewhat similar
to the packet delivery ratio in unicast. After a message is
generated, it is first stored at the originator, and as time goes
on, it reaches more and more nodes. We observe how many
other nodes a particular message has reached by the end of
the 30-minute test. For a given message m, we denote the set
of nodes in the network that m has reached other than the
message originator itself by Om. Thus, the extent of message
m is defined as |Om|, i.e. how many other devices the message
has reached in the end. Among our 10 devices, 200 messages
are injected in total, collectively denoted by M. As such, we
plot a histogram of the extent over M for network coding
with w = 0.5, 1, and 2, and for the non-coding approaches in
Figure 2. Note that w = 0.5 is the case when network coding
has a comparable communication overhead as the non-coding
approaches.

0
50

10
0

15
0

20
0

Histogram of message delivery extent

extent

nu
m

be
r o

f m
es

sa
ge

s

0 1 2 3 4 5 6 7 8 9

Network coding (w=0.5)
Network coding (w=1)
Network coding (w=2)
Random
Round robin
Tiered
Oblivious

Fig. 2. Broadcast extent for real devices

IEEE ICC 2014 - Wireless Communications Symposium

5822



In the figure, we can see that the non-coding approaches
all end up with many messages not being delivered to any
other node, i.e. the case of extent 0, because of the very
sporadic connections among devices. Among these methods,
when there is more equal opportunities of messages being
advertised, as with the cases of Random and Round robin, the
extent is slightly better. The other two approaches, Oblivious
and Tiered, would favor newly injected messages but, unfor-
tunately, they can be relentless moving on with new messages
and permanently leave certain old messages behind if they
miss the window. In stark contrast, the three network coding
variants are able to send nearly half of the messages to all 9
other devices. Although for w = 2 the number of messages
reaching all devices is slightly higher than when w = 0.5 or
1, they are fairly comparable, showing that w = 0.5 being
very effective and efficient. Table III is a consolidation of the
histogram into two cases, messages reaching only the minority
in the network (0-4 other devices) and those reaching the
majority (5-9 other devices). We can see that network coding
was able to utilize the transient links very well while the non-
coding forwarding could hardly make any progress. Note that
for the messages generated near the end of the experiments,
they barely had any time to propagate afar, and all these
approaches would have better extent metrics if we gave them
more time by allowing a “damping” period at the and of the
test.

Method 1 ∼ 4 5 ∼ 9

Network coding (w = 2) 45.0% 55.0%
Network coding (w = 1) 31.5% 68.5%
Network coding (w = 0.5) 34.5% 65.5%
Oblivious 96.0% 4.0%
Tiered 100.0% 0.0%
Random 100.0% 0.0%
Round robin 100.0% 0.0%

TABLE III
NUMBER OF MESSAGES REACHING 1-4 AND 5-9 DEVICES

B. Simulated
Although The ONE supports an arbitrary data rate at the

Link Layer for nodes within a given range, our preliminary
tests show that it could not closely simulate the iOS Bluetooth
radios as is. Apparently, we needed the ability to customize
other aspects of the link layer. Thus, we modified the simulator
by adding two parameters to control its behavior. First, we
added a connection delay d for the time that it takes the
GameKit to negotiate and connect two devices when they
come in range. Second, we also gave a link a failure probability
p to accommodate the fact that some transmission may fail
when the radio is busy. (Note that these changes are by no
means to catch how exactly the Bluetooth radios negotiate
between each other, how they create and maintain synchronous
or asynchronous links, or how they resolve collisions and
provide reliability as it would in ns-2. They are simply to
parameterize their synthesized effects at the higher layers.)
We then simulated a 10-node network, where all nodes are

identical hardware-wise and the data rate was 2Mbps for
Bluetooth EDR. After testing various combinations of d and p
and measuring the message deliver extent, we found that when
we gave d a uniform value between 0 and 10 in the experiment
and set p = 50%, the ONE has a very close behavior as
using actual iOS devices. Due to limit of space, we only report
results for these particular values in Figure 3. Furthermore, we
consolidated the data the same way as with real devices and
summarize it in Table IV. We can see that the simulator yields
very similar relative performance between network-coding and
non-coding based approaches in this case.

0
50

10
0

15
0

20
0

Histogram of message delivery extent

extent

nu
m

be
r o

f m
es

sa
ge

s

0 1 2 3 4 5 6 7 8 9

Network coding (w=0.5)
Network coding (w=1)
Network coding (w=2)
Random
Round robin
Tiered
Oblivious

Fig. 3. Broadcast extent in simulation

Method 1 ∼ 4 5 ∼ 9

Network coding (w = 2) 40.5% 59.5%
Network coding (w = 1) 29.0% 71.0%
Network coding (w = 0.5) 29.5% 70.5%
Oblivious 54.0% 46.0%
Tiered 62.0% 38.0%
Random 54.0% 46.0%
Round robin 43.0% 57.0%

TABLE IV
NUMBER OF MESSAGES REACHING 1-4 AND 5-9 NODES IN SIMULATION

V. CONCLUDING REMARKS

We started out with a goal of experimental studies of DTNs
of medium-to-large sizes to assess their performance with and
with out using network coding. Due to the prohibitive cost
of using real devices, both in terms of monetary and time
senses, the process of directly working with mobile devices
can be very laborious and error-prone. We then decided to
find out how a simulator widely-used in DTN research, the
ONE, would mimic real devices by a side-by-side comparison
between the exactly same, real and simulated, scenario of
10 devices. The performance gain of network coding over
conventional data forwarding was evident through real-device
experiments. More importantly, we found that, after enhancing
the link layer with a few necessary parameters to simulate
the iOS GameKit, tests using the ONE would produce very

IEEE ICC 2014 - Wireless Communications Symposium

5823



similar performance to using the Apple iOS devices. We now
have more confidence that the ONE would yield more reliable
results in larger networks with the enhancement.
In future research, we would like to use the enhanced ONE

simulator to study larger DTNs. For example, we know that the
generation size G is an effective parameter to control network
coding. If the number of nodes in the network is known
a priori, setting this parameter to a fixed value may serve
this purpose. However, a more flexible and scalable approach
would be to obtain a good value of it as the network operates
and to allow it to adjust to the network conditions dynamically.
This issue was studied in the simulated tests of Widmer and
Le Boudec [20], and we intend to further investigate it using
real devices. We also plan to test the ONE against Android
OS devices to find the best parameters in order to bridge the
gap between these two as well. Knowing the much higher
heterogeneity among devices on this platform, we expect more
combination tests to achieve such a goal. The benefit would
be producing an even more trust-worthy simulator for future
experimental research on DTN and network coding.

REFERENCES

[1] Delay tolerant networking research group.
http://www.dtnrg.org/wiki/Home.

[2] Haggle project. http://code.google.com/p/haggle/.
[3] The interplanetary network (IPN). http://tmo.jpl.nasa.gov/.
[4] The opportunistic network environment (ONE) simulator.

http://www.netlab.tkk.fi/tutkimus/dtn/theone/.
[5] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W.

Yeung. Network information flow. IEEE Transactions on Information
Theory, 46(4):1204–1216, July 2000.

[6] Szymon Chachulski, Michael Jennings, Sachin Katti, and Dina Katabi.
Trading structure for randomness in wireless trading structure for
randomness in wireless trading structure for randomness in wireless
opportunistic routing. In Proceedings of the ACM SIGCOMM Con-
ference on Applications, Technologies, Architectures, and Protocols for
Computer Communications, pages 169–180, 2007.

[7] Yuanchu Chen, Walter Taylor, Sam Coxon, and Jason H. Moore. isnac:
Infrastructureless social networking at academic conferences. In Demo
at the 31st IEEE International Conference on Computer Communica-
tions (INFOCOM). IEEE, 2012.

[8] Philip A. Chou, Yunnan Wu, and Kamal Jain. Practical network coding.
In Proceedings of Allerton Conference on Communication, Control, and
Computing, 2003.

[9] Christina Fragouli, Jean-Yves Le Boudec, and Jorg Widmer. Network
coding: An instant primer. SIGCOMM Computer Communication
Review, 36(1):63–68, 1 2006.

[10] Sushant Jain, Kevin Fall, and Rabin Patra. Routing in a delay tolerant
network. In Proceedings of the ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications, pages 145–158. ACM, 2004.

[11] Philo Juang, Hidekazu Oki, Yong Wang, Margaret Martonosi, Li Shiuan
Peh, and Daniel Rubenstein. Energy-efficient computing for wildlife
tracking: design tradeoffs and early experiences with ZebraNet. In
Proceedings of the 10th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
X), pages 96–107, 2002.

[12] Maurice J. Khabbaz, Chadi M. Assi, and Wissam F. Fawaz. Disruption-
tolerant networking: A comprehensive survey on recent developments
and persisting challenges. IEEE Communications Surveys & Tutorials,
14(2):607–640, 2012.

[13] Yunfeng Lin, Baochun Li, and Ben Liang. Efficient network coded data
transmissions efficient network coded data transmissions in disruption
tolerant networks. In Proceedings of the 27th IEEE International
Conference on Computer Communications (INFOCOM), 2008.

[14] Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic routing
in intermittently connected networks. SIGMOBILE Mobile Computing
and Communications Review, 7(3):19–20, July 2003.

[15] Anders Lindgren and Pan Hui. The quest for a killer app for oppor-
tunistic and delay tolerant networks. In Proceedings of the 4th ACM
Workshop on Challenged Networks (CHANTS), pages 59–66. ACM,
2009.

[16] Xu Liu, Yuanzhu Chen, Cheng Li, Walter Taylor, and Jason H.
Moore. Message prioritization of epidemic forwarding in delay-tolerant
networks. In Proceedings of International Conference on Computer
Networking & Communications (ICNC), 2014.

[17] Muriel Medard and Alex Sprintson. Network Coding: Fundamentals
and Applications. Academic Press, 1st edition, 2011.

[18] Thrasyvoulos Spyropoulos, Konstantinos Psounis, and Cauligi S.
Raghavendra. Spray and wait: an efficient routing scheme for inter-
mittently connected mobile networks. In Proceedings of the ACM
SIGCOMM Workshop on Delay-Tolerant Networking, pages 252–259.
ACM, 2005.

[19] Amin Vahdat and David Becker. Epidemic routing for partially-
connected ad hoc networks. Technical Report CS-200006, Duke Uni-
versity, 2000.

[20] Jorg Widmer and Jean-Yves Le Boudec. Network coding for efficient
communication in extreme networks. In Proceedings of the 2005 ACM
SIGCOMM Workshop on Delay-Tolerant Networking, pages 284–291,
2005.

[21] Jian Zhang, Yuanzhu Chen, and Ivan Marsic. MAC-layer proactive
mixing for network coding in multi-hop wireless networks. Computer
Networks, 54(2):196–207, 2010.

[22] Xiaolan Zhang, Jim Kurose, Brian Neil Levine, Don Towsley, and
Honggang Zhang. Study of a bus-based disruption-tolerant network:
Mobility modeling and impact on routing. In Proceedings of the
13th annual ACM International Conference on Mobile Computing and
Networking (MobiCom), pages 195–206, 2007.

[23] Zhensheng Zhang and Qian Zhang. Delay/disruption tolerant mobile
ad hoc networks: latest developments. Wireless Communications and
Mobile Computing, 7(10):1219–1232, December 2007.

IEEE ICC 2014 - Wireless Communications Symposium

5824


