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Abstract

Model expansion problem is a question of determining, given a formula and a structure
for a part of the vocabulary of the formula, whether there is an expansion of this structure
that satisfies the formula. Recent development of a problem-solving paradigm based on
model expansion by (Mitchell & Ternovska, 2005; Mitchell, Ternovska, Hach, & Mohebali,
2006) posed the question of complexity of this problem for logics used in the paradigm.

We discuss the complexity of the model expansion problem for a number of logics,
alongside that of satisfiability and model checking. As the task is equivalent to witnessing
leading existential second-order quantifiers in a model checking setting, the paper is in
large part a survey of this area together with some new results. In particular, we describe
the combined and data complexity of model expansion for FO(ID) (Denecker & Ternovska,
2008), as well as guarded and k-guarded logics of (Andréka, van Benthem, & Németi, 1998)
and (Gottlob, Leone, & Scarcello, 2001).

1. Introduction

In model theory, expanding a structure means adding new functions and relations to the
structure, while keeping the same domain. Model expansion (abbreviated MX), for a logic
L, is the following problem. Given a formula φ of L, and a structure A for part of the
vocabulary of φ, determine if there an expansion of A to the full vocabulary of φ that
makes φ true. We may consider the task for a variety of logics, including classical first-
order and second-order logic (FO and SO, respectively), various non-classical logics, and
restrictions or extensions of standard logics. Here, we examine the complexity of model
expansion for a number of restrictions and extensions of classical first-order logic (FO), and
a related question about expressiveness. Our study is motivated by a relationship between
MX for these logics and practical considerations in declarative programming for search
problems.

In particular, we analyze the complexity of model expansion for FO(ID), an extension
of FO with inductive definitions, GFk, the k-guarded fragment of FO, and GFk(ID). Table
1.3 on page 4 gives an overview of the complexity and expressibility results presented in
this paper.

∗. The first two authors were supported in part by PIMS postdoctoral fellowships at Simon Fraser Univer-
sity; all authors were supported in part by NSERC.



Model Expansion and Expressiveness of FO(ID) and Other Logics

Some of these results follow immediately from well-known theorems such as these of
Fagin’s (Fagin, 1974) and Grädel’s (Grädel, 1992)); others are considered for the first time
in this paper. We present these results in the context of the complexity of the closely
related, but more well-studied, tasks of finite satisfiability and model checking. This work
extends an earlier version (Kolokolova, Liu, Mitchell, & Ternovska, 2006).

1.1 Model Expansion, Constraint Programming, and Descriptive Complexity

A number of somewhat independent lines of work, under labels such as “constraint modeling
languages” or “declarative programming for search problems”, aim to produce high-level
declarative languages for representing decision and search problems, together with tools
(“solvers”) for using these languages to solve instances of the problems in practice. It is
natural to see much of this work as having in common the underlying logical task of model
expansion. The idea here is that the formula φ, is a problem specification, which is fixed
for a particular problem. The given finite structure A is the instance, and expansions of A
that satisfy φ correspond to solutions to the instance.

Example 1.1. For example, the classical NP problem 3-colourability can be naturally ex-
pressed as FO MX as follows: the 3-colourability condition is encoded as a formula, and a
graph is given as an input structure. The colours then are the expansion predicates for the
input structure.

Let A be a graph G = (V ;E), and let φ be

∀v∀w(R(v) ∨B(v) ∨G(v)) ∧
∧

Q∈R,G,B

(¬Q(v) ∨ ¬Q(w) ∨ ¬E(v, w)).

Let B be an expansion of A to vocab(φ). Then B |= φ iff RB, GB, BB give a three-colouring
of G.

Many of the existing approaches to representing search problems explicitly use logical
languages. Examples include answer set programming (ASP) languages, such as those of
LPARSE and DLV, NP-Spec (Cadoli, Ianni, Palopoli, Schaerf, & Vasile, 2000), ConSQL
(Cadoli & Mancini, 2002) and ASPPS (East & Truszczynski, 2006), and it is easy to see
that the underlying task is model expansion1. The logic of NP-Spec is an extension of
Datalog with negation; the language of ConSQL is a generalization of SQL, and thus the
logic involved is a syntactic variant of FO. The MX Project (Mitchell & Ternovska, 2005;
Mitchell et al., 2006) is to build languages and systems explicitly based on model expansion
for extensions of classical logic.

Examples where the languages are not logics include ESSENCE (?) and ESRA (Flener,
Pearson, & Agren, 2004), which have semantics specified denotationally, in the style of gen-
eral programming languages. These languages both include fragments which are essentially
fragments of FO and SO extended with a type system, and so it is not hard to see how
significant fragments of these languages can be viewed as logics. For example, in (?, ?),
various fragments of the constraint specification language are presented as model expansion

1. although the use in some cases of Herbrand models muddles the water somewhat.
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for syntactic variants of FO and SO, to carry out an analysis of expressiveness of the lan-
guage. In other cases, such as Zinc and OPL, the relationship to logic is less transparent,
and for these we may see a logic L as a mathematical abstraction of the system language.

Designers of languages and systems may choose their logic according to their goals.
One such goal might be to target problems in a particular complexity class (“capture” the
class). Such a “capturing” property is of practical importance as it provides an assurance
to the user of the universality of a chosen system language for a targeted complexity class.
The importance of providing such universality has been realized before, and proven for a
fragment of ASP, for NP-Spec and ConSQL.

An area which establishes a connection between logics and complexity classes is Descrip-
tive Complexity (Immerman, 1999). A classic example of a descriptive complexity result is
Fagin’s theorem, which tells us that, when the logic L is FO, we can describe precisely the
search problems corresponding to the complexity class NP. This is because model expansion
for FO is the same as model checking for ∃SO, the existential fragment of second-order logic,
for which Fagin’s result applies. The result generalizes to higher levels of Polynomial Time
hierarchy. Results by Grädel (Grädel, 1992) and others show that other logics capture other
interesting complexity classes such as feasible computation classes P and NL.

The methods of finite model theory and descriptive complexity could be utilized by
the Constraint programming community to a greater degree than they are now. However,
the use of classical (i.e., first-order) logic in practical systems (including those tailored for
search problems in NP) is often considered problematic.Many people think one cannot build
systems with a syntactic variant of FO as a specification language because classical logic (or
its extensions) is simply “the wrong kind of language”. One argument is that the language
is too abstract and does not have all the features one needs for effective modeling (e.g. such
features as the ability to say that a relation is a bijection, which of course is FO expressible).

Another argument is that one cannot build an efficient solver for such an expressive
language, where validity is not even decidable (although validity is not the intended task
for search problems).

It is obvious that a lot needs to be done to make finite model theory and descriptive
complexity applicable to constraint programming in practice.

Remark: it is interesting the that “convenient language” people clearly do not believe
in the need for restriction to the degree the “logic” people do, generally speaking.

1.2 The MX Project

The authors of (Mitchell & Ternovska, 2005) proposed formalizing search problems as model
expansion and constricting practical tools based on this formalization. In this framework,
problems are axiomatized in a high-level language, and an automatic reduction to a complete
problem in a complexity class is performed. For example, reduction to SAT or an extension
(or any other NP-complete problem for which an efficient solver exists), can be performed
for NP, and similarly for other complexity classes. The work to date includes development
of a prototype solver, called MXG, which performs as well (often better) even compared
with more mature systems based on other approaches such as Answer Set Programming.
The specification language for MXG is essentially multi-sorted FO, extended with a limited

2



Model Expansion and Expressiveness of FO(ID) and Other Logics

form of inductive definitions and other convenience features. A general report on the project
is (Mitchell et al., 2006) and MXG is described in (?).

While FO model expansion is sufficient for capturing NP, FO lacks many features that
are useful for practical modeling. In particular, this logic lacks a construct to represent
induction. The need for inductive definitions comes from the lack of ability of FO logic to
handle recursion and non-monotonic constructs, a serious handicap in modeling. Simple
and useful properties like transitive closure are not expressible in FO. While induction is
possible to simulate in ∃SO, to model such properties, a “guess and check” approach is
needed. For transitive closure, for example, such modeling is a highly non-trivial task, see
e.g. (Kolokolova, 2004) for details.

1.3 Logics for MX

The languages used in the Constraints community generally do not have recursion. On the
other hand, most logic programming languages (the languages of ASP, Datalog LITE, and
Datalog with negation in case of NP-Spec) represent the opposite extreme — everything
needs to be expressed through a recursive construct. It is quite obvious that recursion
(including recursion through negation) is needed for effective modeling, however it is our
view that such a construct is most useful in combination with a classical part. For this
reason, in (Mitchell & Ternovska, 2005), it was proposed to focus on a logic with inductive
definitions for an MX-based constraint modeling framework. The formalism they chose for
this purpose is ID-logic, developed in (Denecker, 2000; Denecker & Ternovska, 2004a, 2008);
early ideas for using inductive definitions in Knowledge Representation appear already in
(?), and, in combination with classical logic, in (?, ?). The induction construct of ID-
logic allows for natural modeling of monotone and non-monotone inductive definitions,
including iterated induction and induction over well-founded order. Such constructions
occur in mathematics, as well as in common-sense reasoning. The logic is suitable to
model non-monotonicity, causality and temporal reasoning (Denecker & Ternovska, 2004b,
2007), and as such is a good knowledge representation language. Two native solvers for the
propositional fragment were developed (Mariën, Mitra, Denecker, & Bruynooghe, 2005) and
(Pelov & Ternovska, 2005). East and Truszczynski’s system ASPPS (East & Truszczynski,
2006) is a system for solving NP-search problems whose modeling language is a language of
propositional schemata with rule-based notation and positive induction.

While the extension of FO with inductive definitions is useful, it can also be useful to
restrict its power. One interesting restriction is to fragments which are in the family of the
guarded fragments of FO (Andréka et al., 1998). A fragment which is most interesting to us
is GFk (Gottlob et al., 2001), where the conjunction of up to k atoms may act as a guard.
That fragment was used to achieve efficient grounding in (Patterson, Liu, Ternovska, &
Gupta, 2007). In (?), it was shown that GFk is a natural abstraction of the type system
of ESSENCE, and that all quantification in that language is guarded in the sense of GFk.
This fragment also naturally reflects quantification used in SQL and very likely in many
other systems. The fragment GFk (with an additional “upper guard” construct) plays a
crucial role in adding arithmetic to the MX framework (?).
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Table 1: Complexity of model checking, model expansion and satisfiability problems for
some logics. Highlighted are logics and results new to this paper. Here, ≡ denotes
a capture, sometimes over a certain class of structures: ≡s is over structures with
a successor function and ≡BIT over structures with BIT predicate. The notation
“-c” means complete for a respective class; with ∗ means that the logic expresses
a complete problem.

Logic Model checking Model expansion Satisfiability
Combined Data Combined Data

FO PSPACE-c
Sto74

≡BIT AC0

BIS90
NEXP-c
Var82,MT05

≡NP
Fagin74

Und.
Tra50

FO(LFP) EXP-c
Var82

≡sP
Imm82,
Var82,
Liv82

NEXP-c ≡ NP Und.

FO(ID) EXP-c∗ ≡sP∗ NEXP-c∗ ≡NP
MT05

Und.

FOk P-c AC0 NP-c Var95 NP-c, 6≡ NP Und (k>2),
NEXP-c (k=2),
EXP-c (k=1)

GFk P-c
GO99,
GLS01

AC0 NEXP-c∗ ≡NP∗(k≥2),
NP-c (k=1)

Und. (k≥2),
2EXP-c (k=1)
Gra99

RGFk NP-c∗ NP-c,
6≡NP∗

µGF UP∩ co-UP P NEXP-c NP-c 2EXP-c (inf)
GW99,Gra02

GFk(ID) ∈EXP P NEXP-c k>1: ≡NP k>1: Und.
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2. Preliminaries and definitions

In this section, we review the standard notions of “complexity” and “expressiveness” of a
logic, and discuss them in the new context of model expansion. In particular, we define the
data and combined complexity for model checking and model expansion, the complexity of
finite satisfiability, and the concept of “capturing” a complexity class.

2.1 Logical Structures

A vocabulary is a set σ of relation and function symbols, each with an associated arity. A
relational vocabulary has no function symbols. A (relational) structure A for a vocabulary
σ is a tuple containing a universe A (also called the domain of A), and a relation defined
over A, for each relation symbol of σ. If R is an n-ary relation (a.k.a. predicate) symbol
of vocabulary σ, the relation corresponding to R in a σ-structure A is a set of n-tuples of
domain elements denoted RA. For example, we write
A := (A; RA1 , . . . R

A
n , c

A
1 , . . . c

A
k ), where A is the universe and the Ri are relation sym-

bols. A structure is finite if its universe is finite. An example of a finite structure for
vocabulary {E} is a graph G := (V ;EG), where V is a set of vertices, EG is set of pairs of
vertices which represent edges. In this paper, we consider only finite relational structures.

We assume that the reader is familiar with first order logic (FO). We only recall one
concept, which is of particular importance to this paper — satisfiability with respect to a
structure. Given a structure A, and a FO sentence φ (i.e., a formula without free variables),
A |= φ denotes that A satisfies φ, or that φ is true in structure A, or A is a model of φ.

2.2 Second Order Logic

Second order logic (SO), in addition to first-order quantification, allows quantification over
sets (of tuples). This is expressed through quantification over predicate symbols such as,
e.g. P (x1, . . . , xn). An example of a SO formula is

∃R∃B∃G∀v∀w(R(v) ∨B(v) ∨G(v)) ∧
∧

Q∈R,G,B

(¬Q(v) ∨ ¬Q(w) ∨ ¬E(v, w)).

This formula encodes 3-colourability of structures with over a vocabulary consisting of a
single binary relation E (also called “graph structures”, since E is interpreted as an edge
relation of a graph).

For more background on second-order logic please see (Enderton, 2001).
The existential fragment of SO, denoted ∃SO, is the fragment where all second-order

quanfiers are existential. This fragment is of particular importance to us here.
We need to introduce another logic, which is related to SO.

Definition 2.1. Let L be any logic. Let ∃SO(L) be the set of formulas of the form
∃P r1

1 . . .∃P rk
k φ for some k, where φ ∈ L and each P ri

i is a second order relational vari-
able of arity ri. The logic ∃SO(L) may or may not be (equivalent to) a fragment of ∃SO,
depending on L. When L is FO, ∃SO(L) is precisely ∃SO.
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2.3 Three Tasks of Interest

For a given logic L, we consider the complexity of three problems. We repeat the definition
of model expansion for convenience of the reader. For all three problems, we are interested
in the decision versions here.

1. Model Checking (MC): given (A, φ), where φ is a sentence in L and A is a finite
structure for vocab(φ), does A satisfy φ?

2. Model Expansion (MX): given (A, φ), where φ is a sentence in L, A is a finite σ-
structure where σ ⊆ vocab(φ), is there a finite structure B for vocab(φ) which expands
A and satisfies φ?

3. Finite Satisfiability (FinSat): given a sentence φ in L, is there a finite structure A for
vocab(φ) such that A � φ?

In model checking, the entire structure is given, in model expansion a part of it is given, and
in satisfiability we are looking for a structure to satisfy a formula. Finite satisfiability and
model checking have been studied for a long time. Our focus here is the model expansion
task, and we study it in comparison with the other two problems. Often, we derive our
results from the fact that MX for L is equivalent to MC for ∃SO(L). That is, there exists
an expansion of a structure A if there exist interpretations for the expansion predicates, or,
equivalently, if A satisfies the original formula of L preceded by existential quantifiers for
all expansion predicates.

2.4 Data and Combined Complexity

For the tasks of model checking and model expansion, we consider two notions of complexity
introduced in (Vardi, 1982). Here, we are following the presentation from (Libkin, 2004).
Let enc() denote some standard encoding of structures and formulas by binary strings.

Definition 2.2. Let Comp be a complexity class and L a logic.

• The data complexity of model checking problem for L is Comp if for every sentence φ
of L the language {enc(A) | A |= φ} belongs to Comp.

• The combined complexity of model checking for L is Comp if the language {(enc(A), enc(φ)) | A |=
φ} belongs to Comp.

• The data (combined) complexity of the model expansion for L is the data (resp.
combined) complexity of model checking of ∃SO(L). enc(φ)

For the task of finite satisfiability, such a distinction does not make sense — the input
contains only formulas and no structures. Thus, in this case, there is just one notion of
complexity.

For a given logic L, the complexity of model expansion always lies between the com-
plexities of model checking and satisfiability (model existence), regardless of whether we
consider data or combined complexity:

MC(L) ≤ MX(L) ≤ FinSat(L).

6



Model Expansion and Expressiveness of FO(ID) and Other Logics

The reason is that in MX we are given more information than in FinSat by providing a
part of the structure, and in MC even more information is given by providing the entire
structure.

An interesting observation about finite model expansion is that even if the satisfiability
problem for a logic L is undecidable, we always avoid undecidability in MX by fixing a
(finite) universe.

2.5 Short Review of Complexity Classes

We need some background in the complexity theory, which we give using the exposition in
(Libkin, 2004). Let L be a language accepted by a halting Turing machine M . Assume that
for some function f : N → N, the number of steps M makes before accepting or rejecting
a string is at most f(|s|), where |s| is the length of s. If M is deterministic, then we write
L ∈ DTIME(f); if M is nondeterministic, then we write L ∈ NTIME(f). We define the
classes we are interested in this paper. The class P of polynomial-time computable problems
is defined as

P :=
⋃
k∈N

DTIME(nk),

and the class NP of problems computable by nondeterministic polynomial-time Turing
machine as

NP :=
⋃
k∈N

NTIME(nk).

To define NL, we need to talk about space complexity for sublinear functions f . To do
that, we use a model of Turing machines with a work tape. We define NL to be the class
of languages accepted by such nondeterministic machines where at most O(log|s|) cells of
the work tape are used.

The Polynomial Time hierarchy PH is defined as follows. Let Σp
0 = Πp

0 = P. Define
inductively Σp

i = NPΣp
i−1 , for i ≥ 1. That is, languages in Σp

i are those accepted by a
nondeterministic Turing machine running in polynomial time such that the machine can
make “calls” to another machine that computes a language in Σp

i−1. Such a call is assumed
to have a unit cost. We define the class Πp

i as the class of languages whose complements
are in Σp

i . Notice that Σp
1 = NP and Πp

1 = co-NP. We define the polynomial hierarchy as

PH :=
⋃
i∈N

Σp
i =

⋃
i∈N

Πp
i .

The relationship between the main complexity clases is as follows:

NL ⊆ P ⊆
{

NP
co-NP

}
⊆ PH ⊆ PSPACE.

None of the containments of any two consecutive classes in this sequence is known to be
proper, although it is known that NL $ PSPACE.

2.6 Capturing Complexity Classes

A property P of structures is definable in logic L if there is a sentence φP ∈ L such that for
every structure A, we have that A |= φP iff A has property P .
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Definition 2.3. Let D be a class of finite structures, Comp be a complexity class, and L
be a logic.

1. L captures Comp on D (L ≡D Comp) if

(a) for every fixed sentence φ ∈ L, the data complexity of evaluating φ on structures
from D is a problem in the complexity class Comp, and

(b) every property of structures in D that can be decided with complexity Comp is
definable in the logic L.

2. We say that model expansion for logic L captures a complexity class Comp if Comp
is captured by ∃SO(L) in the sense above.

Fagin’s theorem says that ∃SO captures NP (Fagin, 1974). Similar results, which we
discuss later, exist for P, NL, and the Σ levels of the Polynomial Time hierarchy. For more
background on finite model theory and descriptive complexity, please see (Immerman, 1999;
Libkin, 2004).

Capturing NP is a property of the logic L. It says that every problem in NP can be
axiomatized as model expansion for L. NP-completeness of the MX task for L is a different
property. It means that some NP-complete problems can be represented as MX, e.g. 3-
colourability. Of course, we can always solve a particular problem in NP by a constructing
a reduction to a given complete problem, but we may not be able to represent it in our logic
L.

3. Complexity of MX for first-order logic

Complexities of model checking and satisfiability for FO have been known for several
decades. The combined complexity of model checking for FO is PSPACE-complete by re-
duction from the problem QBF (Stockmeyer, 1974). The data complexity of model checking
for FO is complete for AC0; moreover, FO captures AC0 over structures with BIT predicate
(or arithmetic structures) (Barrington et al., 1990).

Theorem 3.1. The combined complexity of MX for FO is NEXP-complete; the data com-
plexity is NP-complete. Moreover, MX for FO captures NP.

Proof. The NEXP-completeness of combined complexity for MX of FO is implicit in the
proof of expression complexity of ∃SO from (Vardi, 1982). A different proof is presented in
(Mitchell & Ternovska, 2005). The NP-completeness and the capturing NP results follow
immediately from Fagin’s theorem (Fagin, 1974), since MX for a logic L is equivalent to
model checking for ∃SO(L) by existentially quantifying over the expansion vocabulary.

Remark 3.2. This also allows us to capture levels of polynomial-time hierarchy: since
complexity of MX for Πi is Σi+1, MX for Πi captures Σp

i+1.

Remark 3.3. In some cases, the only information about the model that is given as an
instance for the model expansion is the size of the model (i.e., the instance vocabulary σ
is empty). In that case, it is reasonable to give the size of a model as a number in binary
notation. This compact representation leads to an exponential increase in complexity (since
the structure itself is exponential in the size of the input).
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Although data complexity of model expansion for full first-order logic is NP-complete,
there are fragments of FO for which model expansion is feasible. In particular, results from
(Grädel, 1992) translate to the following results on Horn and Krom sentences.

Definition 3.4. A universal Horn formula is a first-order formula consisting of a conjunc-
tion of Horn clauses, preceded by universal first-order quantifiers. Here, a Horn clause is
a disjunction of literals, at most one of which is a non-negated occurrence of an expansion
predicate. A universal Krom formula is defined similarly, but the restriction is at most two
occurrences of expansion predicates per clause.

Theorem 3.5. The data complexity of MX for universal Horn and Krom formulae is,
respectively, P-complete and NL-complete. Moreover, MX for universal Horn and Krom
captures P and NL, respectively, on successor structures.

4. Complexity of MX for guarded fragments of FO

The guarded fragment GF of FO was introduced by Andréka et al. (Andréka et al., 1998).
Here, any existentially quantified subformula φ must be conjoined with a guard, i.e., an
atomic formula over all free variables of φ. An alternation-free portion of guarded fixed-
point logic is equivalent to Datalog LITE (?). Gottlob et al. (Gottlob et al., 2001) extended
GF to the k-guarded fragment GFk where the conjunction of up to k atoms may act as a
guard.

An extensive treatment of GSO, the second-order version of GF , is presented in (?). In
this paper, the authors show the relationship between monadic and guarded logics and study
their relationship on various structures. This corresponds to the complexity of MX for GF .
In particular, they show that GSO is strictly more powerful than monadic second-order
logic.

The combined complexity of model checking for GFk is P-complete (Grädel & Otto,
1999; Gottlob et al., 2001). In particular, model checking for GFk can be done in time
O(lnk), where l is the size of the formula, and n is the size of the structure (Liu & Levesque,
2003). The finite satisfiability problem for GF is 2EXP -complete (Grädel, 1999b).

In this section, we show that the combined complexity of MX for GFk, k ≥ 1, is the
same as that for FO, and MX for GFk, k ≥ 2, captures NP just as MX for FO does. We also
identify a fragment of GFk, which we denote by RGFk, such that the combined complexity
of MX for RGFk is NP-complete; a similar-style version of GF was discussed in (?) in the
context of Datalog LITE. Although the data complexity of MX for RGFk is NP-complete,
we show that it does not capture NP. As a corollary of our main results, we show that finite
satisfiability for GF2 is undecidable.

Formally, GFk is defined as follows:

Definition 4.1. The k-guarded fragment GFk of FO is the smallest set of formulae such
that
1. GFk contains atomic formulae;
2. GFk is closed under Boolean operations;
3. GFk contains ∃x̄(G1 ∧ . . . ∧ Gm ∧ φ), if the Gi are atomic formulae, m ≤ k, φ ∈ GFk,
and each free variable of φ appears in some Gi. Here G1 ∧ . . .∧Gm is called the guard of φ.
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Since GFk is closed under negation, we may consider universal quantification to be included
as an abbreviation in the usual way.

Definition 4.2. In the context of MX, a fragment of GFk in which all guards are given by
the instance structure is denoted RGFk.

That is, in RGFk formulas no expansion predicates appear in guards.
Let FOk denote FO formulae that use at most k distinct variables. Then it is easy to

see that any FOk formula can be rewritten in linear time into an equivalent one in RGFk,
by using atoms of the form x = x as parts of the guards when necessary. For example, the
formula ∃x∃y[R(x) ∧ E(x, y)] can be rewritten into ∃x∃y[R(x) ∧ y = y ∧ E(x, y)], where R
is an instance predicate, and E is an expansion predicate.

Lemma 4.3. 2 There is a polynomial-time algorithm that, given an arbitrary ∃SO sentence,
constructs an equivalent ∃SO sentence whose first-order part is in GF2.

Proof. Suppose φ is a ∃SO sentence ∃X1 . . .∃Xm ϕ, where ϕ is an FO formula. Let l be
the size of φ, and let k be the width of ϕ, that is, the maximum number of free variables in
any subformula of ϕ. We introduce k new predicates U1, . . ., Uk such that the arity of Ui is
i, 1 ≤ i ≤ k. Let ϕ′ be the formula obtained from ϕ by replacing any subformula ∃x̄ ψ(x̄)
with ∃x̄(Ui(x̄) ∧ ψ(x̄)) and any subformula ∀x̄ ψ(x̄) with ∀x̄(Ui(x̄) ⊃ ψ(x̄)), where i is the
length of x̄. Let η be the formula

k−1∧
i=0

∀x1 . . .∀xi+1(x1 = x1 ∧ Ui(x2 . . . xi+1) ⊃ Ui+1(x1 . . . xi+1)).

It is easy to see that any model of η interprets Ui as the i-ary universal relation, 1 ≤ i ≤ k.
Now let φ′ be the ∃SO sentence ∃X1 . . .∃Xm∃U1 . . .∃Uk (ϕ′ ∧ η). Clearly, ϕ∧ η ∈ GF2, and
φ′ is equivalent to φ. Also, both ϕ′ and η are of size O(l2), and hence φ′ is of size O(l2).

Lemma 4.4. There exists a polynomial-time algorithm that, given a structure M and an
∃SO sentence φ, constructs a structure M ′ and an ∃SO sentence φM such that the first-
order part of φM is in GF1, and M |= φ iff M ′ |= φM .

Proof. Suppose M is a structure, and φ is an ∃SO sentence. Let n be the size of M , and
let l be the size of φ. For each domain element a of M , we introduce a new constant symbol
ca. Let M ′ be the structure that expands M by interpreting ca as a. Let φ′ be the ∃SO
sentence constructed from φ as in the proof of the above lemma. Now let φM be the sentence
obtained from φ′ by replacing each subformula ∀x1 . . .∀xi+1(x1 = x1 ∧ Ui(x2 . . . xi+1) ⊃
Ui+1(x1 . . . xi+1)) with∧

a∈dom(M)

∀x2 . . .∀xi+1(Ui(x2 . . . xi+1) ⊃ Ui+1(cax2 . . . xi+1)).

Clearly, the first-order part of φM is in GF1, M |= φ iff M ′ |= φM , and the size of φM is
O(l2n).

2. Proved independently by Jurai Stacho
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Theorem 4.5. (1) The combined complexity of MX for GFk, k ≥ 1 is NEXP-complete.
(2) MX for GFk, k ≥ 2 captures NP.

Proof. (1) follows from Lemma 4.4 and that the combined complexity of MX for FO is in
NEXP. (2) follows from Lemma 4.3 and that MX for FO captures NP.

Lemma 4.6 ((Mitchell & Ternovska, 2005)). 3-SAT is poly-time reducible to combined MX
for RGF1.

Proof. Suppose Γ = {C1, . . . , Cm} is a set of 3-clauses. Let A be the structure with universe
{a,¬a | a ∈ atoms(Γ)} such that A interprets Clause as the set of clauses in Γ and interprets
Complements as the set of complementary literals. Let φ be

∀x∀y∀z(Clause(x, y, z) ⊃ True(x) ∨ True(y) ∨ True(z))
∧ ∀x∀y(Complements(x, y) ⊃ (True(x) ≡ ¬True(y))).

Clearly, φ ∈ RGF1, and Γ is satisfiable iff A can be expanded to a model of φ.

We quote the following result concerning polynomial-time grounding of RGFk sentences:

Lemma 4.7 ((Patterson et al., 2007)). Combined MX for RGFk is polytime reducible to
SAT.

Proof. (Patterson et al., 2007) gives an algorithm that, given a structure A and RGFk

sentence φ, constructs in O(l2nk) time a propositional formula ψ which is satisfiable iff A
can be expanded to a model of φ iff ψ, where l is the size of φ, and n is the size of A.

Theorem 4.8. (1) The combined complexity of MX for RGFk is NP-complete. (2) The
data complexity of MX for GF1 and RGFk is NP-complete. (3) MX for RGFk, and hence
also FOk, does not capture NP.

Proof. (1) follows from Lemmas 4.6 and 4.7. (2) follows from Lemma 4.6 and that the data
complexity of MX for FO is in NP. For (3), since SAT can be decided in nondeterministic
O(n2) time, by Lemma 4.7, MX for RGFk can be decided in nondeterministic O(n2k) time.
By Cook’s NTIME hierarchy theorem (Cook, 1973), for any i > 2k, there is a problem that
can be solved in nondeterministic O(ni) time but not nondeterministic O(ni−1) time. Thus
there are infinitely many problems in NP that cannot be expressed by MX for RGFk.

Theorem 4.9. The finite satisfiability problem for GFk, k ≥ 2 is undecidable.

Proof. By the proof of Lemma 4.3, finite satisfiability for FO can be reduced to that for
GF2.

5. Complexity of ID-logic

One disadvantage of first-order logic as a programming language is its lack of mechanism
for recursion and induction. Therefore, it is natural to consider extending first-order logic
by adding inductive definitions or fixpoint operators. ID-logic (Denecker & Ternovska,
2008) is an extension of classical logic with inductive definitions, in which (non-monotone)
definitions can appear as atomic formulae.

11
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Definition 5.1. An inductive definition ∆ is a set of rules of the form ∀x̄(X(t̄)← φ) where
X is a predicate symbol (constant or variable) of arity r, x̄ is a tuple of object variables, t̄
a tuple of object variables of length r, φ is an arbitrary first-order formula.

The semantics of the logic is defined by the standard truth recursion of classical logic,
augmented with one additional rule saying that a valuation I satisfies a definition D if
it is the 2-valued well-founded model of this definition, as defined in the context of logic
programming.

Example 5.1. Consider the formula ∆even(E) ∧ ∀x(E(x) ∨O(s(x))), where

∆even ≡
{

E(x) ← x = 0
E(s(s(x))) ← E(x) ∧ ¬E(s(x))

}
.

This formula states that every number is either even or odd. Definition ∆even is one of
possible definitions of even numbers, which is total on natural numbers, but not on integers.

Evaluation of such formulae proceeds as follows. Start with upper and lower bounds on
the value of the predicate being defined set to I0 = ∅ and J0 = Uk. Then, fixing the negated
variables to the values given by the upper (lower) bound, compute the next lower (upper)
bound by evaluating the resulting positive definition. Repeat until a fixpoint is reached.
If there is no fixpoint, we say that the formula containing this definition does not have a
model.

Remark 5.2. Note that in the model-checking context all predicates mentioned in a formula
of ID-logic, including those defined with inductive definitions, are provided as part of the
structure. That is, a formula is true on exactly those structures that provide interpretations
for defined predicates that satisfy the definitions.

5.1 Equivalence of model checking for FO(ID) and FO(LFP)

In this section we show that first-order logic with inductive definitions, denoted FO(ID),
can be simulated by first-order logic with least fixed point operator, FO(LFP) and vice
versa (using additional relational variables). This allows us to transfer known complexity
results for FO(LFP) to FO(ID).

Lemma 5.3. Model checking for FO(ID) can be simulated by model checking for FO(LFP)
on the same structure.

Proof. Since interpretations of all predicates are provided by the structure, each definition
can be evaluated independently. Therefore, it is sufficient to show how to encode a single
definition ∆ (which can have multiple defined predicates) by a FO(LFP) formula. If a
definition is not total on I0, we need to ensure that there is no model for the whole theory.
Then we can use evaluated definitions to construct a FO(LFP) formula corresponding to
the original FO(ID) formula.

A definition ∆ for a given initialization of open (not occurring in a head of any rule)
predicates from I0 is evaluated as follows.

Replace in ∆ all occurrences of Xi by X ′
i for new variables X ′

i. For example, a rule
∀x̄(Xi(t̄(x̄)) ← ¬Xj(t̄′(x̄))) becomes replaced with ∀x̄(Xi(t̄(x̄)) ← ¬X ′

j(t̄
′(x̄))) Let φ be a

formula encoding ∆ after this substitution.

12
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Computing one (double) step of the evaluation (a step corresponding to evaluating φ
with I and then J giving the values for negated literals) becomes

ψ ≡ LFPx̄,X̄φ([LFPx̄,X̄φ]j/X ′
j), (*)

by semantics of ID-logic. Here fixpoints are simultaneous on all Xi and the notation
[LFPx̄,X̄φ]j/X ′

j means replacing the occurrences of X ′
j in φ with the fixpoint of Xj in

the simultaneous least fixed point of φ over all X̄.
To simplify the presentation assume, using the fact that simultaneous LFP is equivalent

to LFP, that a variable X encodes all variables Xi. Then, the simultaneous LFPs from ψ
become just LFPs.

Let Y be a variable encoding the fixpoint of X after the double step (∗). This variable
is used to initialize X ′

i before the next double step. Since after each step ψ the variable Y
contains the partial truth assignments on structure I after ith (double) step of the evaluation
procedure, Y is monotone. Therefore, there exists a fixpoint of Y defined by ψ, and it is
the least fixed point. Therefore, the formula Ψ∆(ū) ≡ [LFPȳ,Y ψ(Y )]ū computes the values
of the defined predicates in φ whenever the fixpoint exists. This is also true when Y is
treated as a list of predicates X1 . . . Xk being defined in ∆, in which case LFP in Ψ∆ is a
simultaneous fixed point.

It is possible, though, that the value computed using the upper bound estimation (the
innermost LFP of the double step (∗)) is different from the outer LFP in the double step.
If this is the case, then the following formula is false (“consistency check”):

CONS∆ ≡ ∀z̄([LFPȳ,Y ψ(Y )]z̄ ↔ LFPx̄,X̄ψ(x̄, LFPȳ,Y ψ(Y )/X ′
i))[z̄] (1)

Suppose now that we have FO(ID) formulas with multiple definitions. Let φ′ be a
first-order formula with occurrences of definitions ∆1 . . .∆m for some m. To simplify the
presentation, view each definition as defining one predicate Pi. If the fixpoint of ∆i exists,
then ∀x̄(Pi(x̄)↔ Ψ∆i(x̄)), so occurrences of Pi in φ′ can be treated as occurrences of Ψ∆i .
From the point of view of evaluation, it is more efficient to compute Pi ≡ Ψ∆i and then
refer just to Pi.

Finally, φ′ is converted to a formula

Φ ≡
m∧

i=1

CONS∆i ∧ φ′((∀x̄(Pi(x̄)↔ Ψ∆i(x̄)))/∆i)

That is, Φ is a conjunction of two parts: the conjunction of consistency formulae which
ensures that all definitions were total, and φ′, which is the same as the original formula
except all definitions are replaced by the FO(LFP) formulae computing them.

The resulting formula is in FO(LFP), which completes this direction of the proof.

Example 5.2. Recall the formula from example 5.1 stating that every number is either
even or odd. The following describes a construction of an equivalent FO(LFP) formula.

A formula corresponding to ∆even becomes, replacing ¬E with ¬E′,

{(φE(x,E,E′) ≡ (∃y(x = y ∧ y = 0)) ∨ (∃y(x = s(s(y)) ∧ E(y) ∧ ¬E′(s(y))))}.
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Define ψE(z,E′) ≡ [LFPx,EφE(x,E,LFPE,xφE(x,E,E′)))]z. This computes one iter-
ation of the stable operator ST 2

∆, which corresponds to obtaining new pair of values for I
and J .

Now, Ψ∆ ≡ LFPz,E′ψE(z,E′). Consistency is checked by the formula
∀uΨ∆(u)↔ [LFPx,EψE(x,E,Ψ∆)]u. Now, the final formula becomes

(∀uΨ∆(u)↔[LFPx,EψE(x,E,Ψ∆)]u) ∧ (∀x(P (x)↔Ψ∆(x)) ∧ (P (x) ∨O(s(x))).

Here, the first conjunct checks that the definition “makes sense”, otherwise the formula does
not have a model, the second part is a syntactic sugar defining a particular variable P (x)
to represent the defined E, and the last part uses P outside of the definition ∆E.

Lemma 5.4. For every formula φ of FO(LFP) and a structure A there is a formula φ′

of ID-logic such that φ holds on A iff φ′ holds on A extended by the relational variables
interpreted as the names for the fixpoints.

Proof. By (Ebbinghaus & Flum, 1995) theorem 9.4.2, every FO(LFP) formula is equivalent
to one of the form ∀u[LFPz̄,Zψ]ũ, where ψ ∈ ∆2. This can be written as an ID-logic formula
{Z(z̄)← ψ} ∧ ∀uZ(ũ). Now, whenever a structure A is a model of an FO(LFP) formula φ,
a structure A+ is a model of the equivalent formula φ′ of ID-logic. Here, A+ is A together
with a relation variable Z of the arity |z̄|, and A+ interprets Z to be the LFPz̄,Zψ.

Therefore, the following holds:

Theorem 5.5. The complexity of model checking of ID-logic and FO(LFP) coincide over
finite structures.

Proof. The direction from ID-logic to FO(LFP) follows immediately from lemma 5.3. For
the other direction, to check a FO(LFP) formula φ on a structure A, use the ID-logic
evaluation algorithm on φ′ to compute the (unique, if it exists) value of Z, then evaluate φ′

on A+ with this Z.

Corollary 5.6. Combined complexity of the model checking for FO(ID) is complete for
EXP. Data complexity of model checking for FO(ID) is complete for P.

5.2 Complexity of MX for FO(ID)

Intuitively, adding polynomial-time computable predicates under the second-order quanti-
fier of an NP predicate should not add any extra power.

This suggests that both combined and data complexity of model checking for FO(ID)
(or, equivalently, FO(LFP)) should coincide with the corresponding complexities of MX for
FO.

Theorem 5.7. Combined complexity of MX for FO(ID) is NEXP-complete. MX for
FO(ID) captures NP.

Proof. We know from Theorem 3.1 that data complexity of MX is hard for NP and the
combined complexity is hard for NEXP. Therefore, it is sufficient to show membership in
these classes.

14
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The evaluation algorithm proceeds as follows. Use non-determinism to guess the expan-
sion predicates. Now the problem is reduced to evaluating FO(ID) formula on an expanded
structure. By the equivalence of FO(ID) with FO(LFP), his can be done in polynomial
time of the size of the structure when formula is fixed (by (Immerman, 1982; Vardi, 1982;
Livchak, 1982)) and in exponential time when the formula is a part of the input by (Vardi,
1982). In the second case, the size of the expansion predicates can be exponential in the size
of the structure (since their arity is not constant), but in NEXP we can guess exponential-
size certificates.

5.2.1 Fragments of FO(ID) with polynomial-time MX.

Recall that MX for universal Horn formulae was P-complete. We would like to add induc-
tive definitions to such formulae so that the complexity of the resulting logic is still in P.
The following example shows that allowing unrestricted use of expansion predicates in the
inductive definitions makes it possible to encode NP-complete problems.

Example 5.3. Recall the formula for 3-colourability in example 1.1 on page 1. The only
part of this formula which is not Horn is the first disjunction. It can be replaced by the
inductive definition with a rule X(i)← Q(i) for every colour Q. Now, the first disjunction
is equivalent to ∀vX(v). Note that the definition of ID-logic requires that such X were
minimal, therefore, this does not introduce spurious positives.

However, if we disallow any occurrences of the expansion predicates inductive definitions,
P-completeness is preserved.

Lemma 5.8. Adding inductive definitions to universal Horn formulae defined on page 9
preserves data complexity of MX problem to be P-complete, when expansion predicates do
not occur in inductive definitions.

Proof. By theorem 3.5, data complexity of MX problem for universal Horn formulae is
P-complete. Therefore, a polynomial-time algorithm for MX of universal Horn formulae
can first evaluate all inductive definitions, and then run Grädel’s algorithm for evaluating
existential second-order Horn formulae replacing all defined predicates by their computed
values.

We can also add expansion predicates in a restricted fashion. First, all expansion pred-
icates occurring in definitions have to be defined (i.e, occur in a head of a rule of some
definition). Second, such predicates cannot be defined in terms of each other unless they
are in the same definition. Third, the definitions can only occur as conjunction to the rest
of the formula. Intuitively, in this case, if expansion predicates in the body of a definition
are either given values already, or are being defined in that definition, then the definition
can be evaluated. The intuition here is similar to the intuition of RGFk.

Definition 5.9. Let {X̄1, . . . , X̄k} be all expansion predicates occurring in a first-order
formula φ. Then φ is in RFO(ID) if (1) for each X̄i there is a definition ∆i defining all
predicates in X̄i, and ∆i is conjuncted with the rest of the formula. (2) The only expansion
predicates allowed in the body of ∆i are among X̄1, . . . , X̄i−1; the body of ∆1 contains no
expansion predicates.
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More generally, φ is in RuHorn(ID) if there are also expansion predicates P̄ which do not
occur in the definitions and with all definitions removed, φ is universal Horn with respect
to P̄

Theorem 5.10. MX problem for RFO(ID) is P-complete.

Corollary 5.11. MX problem for RuHorn(ID) is P-complete.

6. Conclusion and open problems

In this paper, we give a survey of complexity results related to the model expansion frame-
work.

The implication of the kind of research we present in this paper is broader than the
MX project. The study of complexity-theoretic implications of extending FO with induc-
tive definitions or restricting it to GFk is applicable for other constraint languages. We
believe that our results will help developing existing constraint languages by e.g. informing
the reader which constructs can and cannot be added if the language targets a particular
complexity class.

In order to apply our results to a particular constraints language, one needs to represent
it as model expansion for a particular logic, and then to analyse that logic for expressiveness.
For example, it is easy to relate the results presented in this paper with the language of
ESSENCE (?), since it representation as MX has been done (?)

In addition, this research may help the reader to understand what constitutes the core
part of a language, i.e., a fragment which is sufficient to do everything the entire language
can do. In a sense, it will inform a language developer which constructs can be deleted
from the language without losing the expressive power. Such understanding is important
for solver development — it is much easier to develop a core solver for a fragment of the
language, and to deal with additional constructs by expanding them automatically. Also,
it is important to know the core language for pre-processing of specifications.

Model expansion is a very new approach. Many problems are still unsolved, both theo-
retical and practical. From the theoretical point of view, it would be interesting to extend
our complexity results by looking at the model expansion versions of other commonly used
logic. Also, we know that GF (ID) (guarded logic with inductive definitions) coincides
with µGF on total structures; however, the question is still open whether they coincide
everywhere, like FO(ID) and FO(LFP). There, the problem lies in a different treatment of
inductive definitions that are not total. A very interesting theoretical question is to find a
logic capturing NTIME(nk). We believe such a logic will be closely related to GFk.
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