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2000

In this thesis we present a second-order theory of arithmetic V-Horn, which encom-
passes polytime reasoning. It is equivalent in power to Zambella’s P-def and Cook’s
QPV or PVi; however, whereas those systems contain function symbols for all polytime
functions, V-Horn achieves the same power by restricting the comprehension scheme to
SO-Horn (as defined by Grédel) formulae. Our theory is possibly weaker than V! and,
equivalently, Si, in that it does not necessarily prove their comprehension (or induction)
schemes.

We describe how to encode a run of Horn-SAT algorithm on a SO-Horn formula by a
SO3-Horn formula, and use this result to demonstrate that SO-Horn is provably closed
under complementation. The same method can be used to show that V-Horn provably
defines all polytime functions.

We also show that some descriptive complexity results about SO-Horn logic, in par-
ticular the collapse of SO-Horn to its existential fragment, are formalizable in V;-Horn,

a restriction of V-Horn.
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Chapter 1

Introduction

In this chapter, we outline historical developments in bounded arithmetic and descriptive
complexity, and explain how combining the two perspectives offered by these disciplines
led to our main result — the construction of the second-order theory of arithmetic that
captures polytime without explicitly introducing function symbols for all polytime func-

tions.

1.1 Bounded Arithmetic

Since the celebrated results of Godel on the power of Peano Arithmetic, there has been an
increased interest in studying the power of weaker, bounded fragments of Peano Arith-
metic. A further impetus has been provided by the development of computer science:
the notion of feasible computation motivated the study of theories corresponding to com-
plexity classes below EXPTIME. Since the complexity classes P and NP and relation
between them attract most of the attention in complexity theory, it is natural that there
is an interest in studying the corresponding fragments of Peano Arithmetic.

Cobham [Cob65] was the first to give a machine-independent description of the class of
polytime functions P. He showed that the class of polytime functions is the smallest class

closed under composition and limited recursion on notation; this allowed the treatment
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of polynomial functions in the context of pure logic.

In 1971, Parikh [Par71] proposed the first system of bounded arithmetic, called TAy,
where the induction scheme was restricted to bounded (Ag) formulae. He showed that all
functions that are Ag-definable in 1A are polynomially bounded; i.e., if ¢ is a A formula
and IAg - VZ3yp(z,y), then the value of y is bounded by a polynomial in z. However,
1A, does not allow some important properties, in particular coding of polynomial length
proofs. To allow for that, Paris and Wilkie [PW81a, PW81b] later extended IA, by

adding the axiom €2y, stating the totality of the function z!®l.

The first theory that was explicitly designed in order for all proofs to be feasibly
constructible (i.e., constructible in polynomial time) was the equational theory PV, pro-
posed by Cook in 1975 [Coo75]. There, Cobham’s characterization of polytime was used
to construct polytime functions. One motivation for PV was its close relation with the
Extended Frege proof system: theorems of PV correspond to families of tautologies with
polynomial length proofs. Another candidate for the system with feasibly constructive
proofs was the intuitionistic version of PV, PV presented in [CU93|. This system, as
well as its classical version C'PV, includes an induction on NP predicates; that makes

CPV equivalent in power to Vi! and SJ.

Later, Cook [Co098b| developed a quantified version of PV called QPV, and used it
to study the relationship between NC; and P from the point of view of corresponding
theories, where QALV represents NC; in the same sense as QPV represents P. Since
PV includes the induction of notation, the system PV, axiomatized by the universal
closures of the theorems of PV, has enough power for polytime reasoning; however, it is
possibly weaker than C'PV in that it might not prove the induction on NP predicates
from C'PV.

The major work establishing the relation of complexity theory and bounded arithmetic
was the 1986 PhD thesis of S.Buss [Bus86], where a number of first-order and second-

order theories that characterize the polytime hierarchy (starting with the first level),
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PSPACE and EXPTIME were developed. The most important of them is the first-order
theory S3, consisting of a set of 32 axioms and a PIND induction scheme (induction
on X! formulae). Buss proves that predicates are polynomial iff S proves that they
are in NPNco-NP. He also shows that Si is ¥} conservative over PV; however, general
conservativity of SI over QPV would imply collapse of polynomial hierarchy to P/poly
[Bus95, KPT91, Zam96]. Razborov and, at the same time, Takeuti [Raz93, Tak93] show
the equivalence between first-order and second-order hierarchies, which can be used to
show that Vi (V}' in Krajicek’s notation) is equivalent in power to S5 [Raz93].

Finally, in 1996 Zambella [Zam96] introduced a hierarchy of second-order theories
P;-def, and studied its relation with the hierarchy BA of theories of ¥¥-comp, i > 1. The
lowest level of P;-def hierarchy, after the AC| level, is the theory P-def: a second-order
theory equivalent to Q PV in power. In his paper Zambella proves several interesting re-
sults, in particular that if P-def - X7, ,-comp, then polytime hierarchy provably collapses

)

to X

i13- Similar result was obtained independently by Buss [Bus95].

1.2 Descriptive Complexity

While in bounded arithmetic we are interested in the proving power of theories, in descrip-
tive complexity we are interested in expressive power of logics. Instead of asking what
class of theorems can be proven, we ask what properties (in particular, graph properties)
we can express in certain logics.

This direction of research started in 1974 with Fagin’s work on finite model theory
[Fag74]. Fagin noticed that for each fixed second-order formula, the set of its finite models
forms a language in NP, and every language in NP can be encoded in this fashion. That
is, we can verify in polynomial time if a certain structure is a model of a formula, and, for
the other direction, we can represent a run of an NP Turing machine by a second-order

existential formula [Fag93].
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Later, this result was extended by Stockmeyer [Sto77] to the equivalence between
the polytime hierarchy and second-order formulae. However, it was much harder to
characterize the class P: all existing characterizations require additional restrictions,
namely the presence of successor relation in the language. The monadic fragment of
second-order existential logic appears too weak: it does not include even some problems
in P, such as graph connectivity or reachability [FSV95].

When attempts to capture P by restricting second-order logic failed, researchers tried
to create a suitable characterization by augmenting first-order logic. It was proven by
Barrington, Immerman and Straubing [BIS90] that first-order logic with BIT predicate
has expressive power equivalent to uniform ACy; therefore, a stronger logic than just first-
order was needed. One such characterization of P uses the first-order logic augmented
with the least fixed point operator [Var86, Imm86]. It also requires presence of a successor
relation in the language.

In 1991, Gradel came up with a second-order logic that captures P in the presence
of successor in the language [Grd91]. He restricted second-order logic to SO3-Horn
formulae, using the fact that Horn-SAT can be done in polynomial time. He then proved
that this SO3-Horn logic is equivalent to first-order logic with the least fixed point
operator in the presence of successor, and hence SO3-Horn captures P. The equivalence

between SO3-Horn and P follows almost immediately from the proof of Fagin’s theorem

(see, e.g., [SP98]).

1.3 Our Results

The idea of this thesis came from studying the representations of complexity classes
by bounded arithmetic and by logics in descriptive complexity. There seems to be an
interesting relation between the power of a logic and the power of a second-order theory

with comprehension scheme restricted to formulae from that logic. Let ©Z formulae be
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second-order formulae where all quantifiers are bounded and there are at most i levels
of alternating second-order quantifiers. Then, ¥F formulae, i > 1, which correspond
to the levels of polytime hierarchy by Stockmeyer’s result, give Zambella’s BA when
used in the comprehension scheme. The equivalence between uniform AC; and first-
order logic+BIT, proven by Barrington, Immerman and Straubing in [BIS90], similarly
resembles the relation between Vj and ACy; moreover, in that case the class of functions
definable in Vj is AC| functions. Extending this analogy, we build a second-order theory
with comprehension restricted to SO3-Horn formulae. That is, the objects (sets) that we
can construct are definable by SO3-Horn formulae, and hence are polytime constructible.
This allows us to construct a theory with the power of P-def without introducing any

function symbols, which seems simpler and somewhat more natural.

First, we show that our theory V;-Horn is an extension of V. That is, we can define
all ACy relations in Vi-Horn. Later, it can be used for the proof of equivalence of
Vi-Horn with P-def: Vi-Horn can define all AC, functions (Zambella’s “rudimentary
functions”). Since S formulae can contain first-order existential quantifiers, which are
not allowed in SO3-Horn formulae, we convert 3P formulae into provably equivalent

SO3-Horn formulae.

The first of our two main results is that the collapse of SO3-Horn to SO-Horn is
provable in Vi-Horn. We show that Gradel’s proof of the collapse is formalizable in
Vi-Horn. In general, it is interesting to check how results about descriptive power of
logics can be formalized in the corresponding theories of arithmetic. It is especially true
about the collapse results in light of the results of Zambella [Zam96], Buss [Bus95] and
Krajicek, Pudlak and Takeuti [KPT91], which relate the provable collapse of polytime

hierarchy and the collapse of boolean hierarchy.

Finally, we show how to encode a run of a SO3-Horn-SAT algorithm by a SO3-Horn
formula. This technique is used to show the provable closure of the class of SO3-Horn

formulae under complementation and first-order quantification. It can also be useful
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in defining a class of functions that is provably closed under composition and limited

recursion, which, in turn, is needed to show that V;-Horn is at least as powerful as P-def.



Chapter 2

Preliminaries

2.1 Horn Formulae

Definition 2.1. A propositional Horn formula is a CNF formula, such that at most one
atom occurs positively in each of its clauses. Equivalently, we can view such clauses as

having the form (Iy Aly ... Nlg_1 — lg), where l; are positive literals.

Definition 2.2. A second-order Horn (SO-Horn) formula (over some first-order lan-

guage) in canonical form is
QkPk ce Q1P1v1‘m .. .VIL‘NZS,

where QQ; are 3 or ¥ quantifiers, Py ... P, are unary relation symbols, x,, ...z, are first-
order variables and ¢ is a quantifier-free CNF formula, in which every clause contains
no more than one atom of the form —P;(t) for some term t. If all Q; are existential
quantifiers, we say that it is a second-order existential Horn formula (SO3-Horn).
Every clause can be equivalently represented as Iy A ... Nlp_1 — l,, where none of I;
can be of the form —P;(t). We say that ¢ is a Horn formula with respect to the quantified

second-order variables. There are no occurrences of |P;| in ¢.

It is important to have only universal first-order quantifiers, since for structures of

cardinality at least 2, any second-order existential formula is equivalent to a formula of
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the form 4P, ... P,Vy3z¢ , where ¢ is a conjunction of Horn clauses. For structures of
cardinality 3, every second-order formula is equivalent to a second-order formula with
both universal and existential second-order quantifiers and first order part of the form
AyVz¢p, where ¢ is a conjunction of Horn clauses. [Gria91]

Since we use SO3-Horn formulae in the context of bounded arithmetic, every first-
order quantifier in a SO3-Horn formula is bounded by a polynomial in free variables. An
additional restriction is that we do not allow the upper bound of a quantified variable
(|P;]) as a part of a SO3-Horn formula. Intuitively, we may be able to check for existence
of a number 7 in a set by asking if the least upper bound of the set is larger than i.

Note that only the conjunction of Horn formulae is a Horn formula, but not necessarily

the disjunction or negation.

Ezample 2.1 (Parity is in SO3-Horn). Parity of a string X can be expressed by a formula
APevenI Poda¥n < | X |0,
where ¢ = a A B An A( is a first-order Horn formula. Here,
a = (X(0) = Poga(0)) A (=X (0) = Peyen(0)).

states that P,4q(0) is set if the first bit of X is 1, and P.ye,(0) is set otherwise. The

second condition is
B = (7 Peven(n) V = Ppga(n)).
It states that P.,,(n) and P,y (n) cannot both hold. Together, o and (3 imply that
exactly one of P, (0) and P,q4(0) holds, thus expressing the parity of the first bit of X.
The inductive step is stated by
N=(X(n+4+1)A Peen(n) = Pogg(n + 1)) AM(X(n+ 1) A Poga(n) = Pepen(n + 1))
A (X (n 4+ 1) A Poen(n) = Peyen(n + 1)) A (=X (n+ 1) A Ppaa(n) = Poga(n + 1)).

It says that if the current bit of X is set to 1, then the two predicates change their values.

The new values are still opposite: at least one predicate will be set because of «, and
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the other will have the opposite value because of . If the current bit of X is 0, the
(opposite) values are preserved.

The end condition is
C = Podd(|X|)-
Note that it is not necessary to state explicitly Pr.,e,(n)V Pygq(n) (which is not a Horn

clause). This condition is implicitly given by « and 7.

2.2 Second-Order Theories

The language of weak second-order logic consists of function and predicate symbols,
logical connectives and quantifiers, together with two sorts of variables: first-order and
second-order. Capital letters are used to denote the second-order variables, and lowercase
letters the first-order variables.

In the standard model, the first-order variables are interpreted as numbers (indices),
and the second-order variables as finite sets of numbers. The second-order objects can
also be viewed as numbers in binary; then the first-order objects correspond to numbers
in unary.

For our second-order theory Vi-Horn, we will use the language of Peano Arithmetic
together with the set membership relation € (z € X can be also written as X (x)) and

the strict upper bound operation | |
£,24 = {07 17+7'7| |a G,S,:}

Here, + and - are first-order operations, and < and = first-order relations, with the
usual meanings. The relation € and the operation || relate first-order and second-order
objects: € Y holds iff = is in the set Y, the operation |X| takes an element X and
returns a first-order object equal to the largest element of X plus 1, or 0 if X is empty.

Strings can be represented as nonempty sets, by considering the last element in the set

to be the “delimiter” of a string. Thus, for a nonempty set X, X (i) = 1 will correspond
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to ¢ € X, and the length of a string will be the largest element in X, |X|—1. An empty

string corresponds to a set containing only 0. An empty set does not correspond to any

string.

2.3 Axioms of V;-Horn

We define Vi-Horn to be a second-order theory with the following axioms:

1. Axioms of Peano Arithmetic:

2. Axioms for <:

B1

B2

B3

B4

B5:

B6

B7:

B8 :

B9 :

B10:

cx+1#0
r+l=y+1l—=ax=y
r+0=x

x4+ (y+1)=(r+y)+1

r<yrr<y+1
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3. Additional axioms (existence of predecessor and transitivity of <):

Bll:z#0— Jy(y+1=ux)

Bl2:z<yny<z—zx<z

4. Length axioms:

L1: X(y) =y < |X]

L2:y+1=|X|— X(y)

We also need a comprehension scheme. In Vi-Horn, we will use
YP-Horn-COMP : 3XVz < y(z € X + ¢(2)),

where ¢(z) is any second-order existential Horn formula not containing X, and y is a free

variable.

In V-Horn, the comprehension scheme will be
YP_Horn-COMP : 3XVz < y(z € X + ¢(2)),

where ¢(z) is any second-order Horn formula not containing X and y is a free variable.

All second-order objects in V;-Horn have a finite length. However, we usually do not
state the bound on the length explicitly. Since all first-order quantifiers are explicitly
bounded by a polynomial in the free variables, and there are no applications of || in
SO-Horn or SO3-Horn formulae, only a finite part of the second-order variable can
be referenced. We assume that the length of the set is the strict upper bound on the
indices, and no unreachable index is in the set. That is, the comprehension always gives

the smallest set satisfying the condition.
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2.4 Versions of Induction

There is no induction axiom among the axioms of Vj-Horn. However, induction can be
derived as a theorem. First, we can derive the least number principle (LNP) from the

length axioms; then, the induction scheme can be proven using LNP.
Lemma 2.3. The least number principle is a theorem of Vi-Horn.
LNP: | X|>0— Jz < | X[|(X(2x) AVy < 2-X(y))

Proof. We apply comprehension to obtain a set Y, such that z € ¥V < Vi < |X|(i €
X — z < i). This is a SO3-Horn formula, since X is a free variable. Set Y contains all
elements that are smaller than all elements of X, in particular smaller than the minimal
element of X. Since X is nonempty, there is at least one element in X (since by B11,
| X|>0— 3z(|X|=2+1),and by L2, z + 1 = | X| = X (x)).

Now we need to show that |Y| < |X|. Suppose |Y| > |X|. By B12,1 < |X]| A
|IX| < Y| = 1 < |Y]. Then, by B10,0 < |Y| and so using L2 and B11 as above,
Y]>0—3y(]Y|=y+1)and y+1=|Y| — Y (y). Then by B12 and B10 we get y > z,
where X (z) and Y (y). But by definition of ¥, Vy < |X|Vz < |[X|(z € X — y < x).
Therefore, |Y] < | X].

So, the first element that is not in Y is the smallest element of X (by B12). By length
axioms, if a string |Y'| is nonempty, then the predecessor y of |Y|, which exists by B11, is
a maximal element of |Y|: by L1, B12 and B10, all other elements are at most as large

as y, and by L2, y is in the set. Therefore, |Y| is the minimal element of X. O
Lemma 2.4. Induction on length of a string is a theorem of Vi-Horn.
IND: (X(0)AVy < 2(X(y) = X(y+1))) = X(2)

Proof. We can prove the contrapositive: =IND — =~ LNP. Suppose that for a set X,
both
X(0) AVy <2(X(y) = X(y+1)))
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and =X (z) hold. Our comprehension scheme YZ-Horn-COMP guarantees the existence
of a set Y, which corresponds to the complement of X, with z+1 as a bound on length of
Y. Since z ¢ X, we have |Y| = z + 1. Thus, |Y| > 0, so if LN P holds, then there exists
a minimal element x in Y.Then, Yw < zX(w) A =X (z). If x = 0, then this condition
violates X (0). Otherwise, 0 < z —1 < z. In this case, X (z — 1) holds, but X (x) does
not, and that contradicts Vy < z(X(y) — X(y + 1)) for the case y = x — 1. Therefore,
LN P does not hold. Thus, LNP — IND. O

Lemma 2.5. Induction on length of a string with an arbitrary basis is a theorem of

Vi-Horn. That s, if X s a string, and i is a free variable,
Vi-Hornt (Vy <a(i <a ANX(G)AX(y) = X(y+1))) = X(a)

Proof. We can use LP-Horn-COMP with ¢(z) = X(z + ¢), and bound b, for which
b+ i < a. Now, X(i) — Z(0) and Vy < a(X(z) — X(y + 1)) implies Vy + i <
a(X(y +1) - X(y+ i+ 1)), which in turn gives Vz +i < a(Z(z) — Z(z +1)). By
applying induction to Z we get Z(b). Since X (a) <+ Z(b), X (a) holds. O

2.5 Operations on Second-Order Objects

Minimization function. Minimization function denotes the smallest element in the set
(less than the length). If the set is empty, the length is returned. Thus, z is the
minimal element in X iff

Vy <2X(2) A (y € X)

Pairing function. We encode a pair < z,y > by z, where 2z = (x +y)(x +y + 1) + 2.

This function is a bijection.

Array. An array X is represented as a set of pairs < ¢, 7 >, for which the element of the
array is 1. A row ¢ of X is denoted X[, and is a set consisting of all pairs with

first element equal to i.
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Set operations. Set operations such as X UY and X NY can be defined using com-

prehension with ¢ = X(2) AY(z) and ¢ = X (z) VY (2).

Since in all definitions above there are no quantified variables, they can be considered

Vi-Horn formulae.

2.6 Other Second-Order Theories.

To state some of the results, we need definitions of three other second-order theories. The
descriptions of all three of them are based on the definitions by Zambella in [Zam96].
Definitions of V4 and V; are cited from [Coo98al, the definition of P-def directly from

[Zam96).

2.6.1 Second-Order Theories V; and V;.

Definition 2.6. We define, following the notation in [Coo98a] a LF formula to be a
second-order formula with bounded first-order and second-order quantifiers, which con-
tains at most i alternations of bounded second-order quantifiers, starting with existential
quantifiers. That is, there are only existential bounded second-order quantifiers in P

formulae, and no second-order quantifiers in ©5.

Since the description of Vi;-Horn was based on the descriptions of V; and Vi, these
three theories are very similar. Their language and the first 10 axioms are the same.
However, V, and V; do not have B11 and B12 as axioms, and instead of L2 they include
IND axiom scheme. The comprehension is on ¥ formulae in V; and on X2 formulae in
Vi. Also, in Vi-Horn the bounds on second-order variables are not explicitly specified,
whereas in 1 and Vi, as well as in P-def, they are. Moreover, in V; and V; the second-
order variables are interpreted as strings, not sets, and so the value of the length function

cannot be directly obtained from the values of the indices.
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As shown in [Co098al, the functions definable in V{, are AC, functions, and functions
definable in Vi are polytime functions.

Note that as it was shown earlier, IND is a theorem of V;-Horn, and ¥Z-Horn-COMP
is just a restriction of XB-COMP. In [Kra95], V, and V; correspond to, respectively, 1

and V}'; Zambella refers to them as “theory of ¥5-comp” and “theory of X¥-comp”.

2.6.2 Second-Order Theory P-def.

The axioms of P-def are:

0#£1 a-(b+1)=(a-b)+a
a+0=a a<b<ra<b+1
a+1=0+1—a=0b a+1<b<a<b
a+(b+1)=(a+b)+1 A<be (Vze Az <bd
a#0 (Ir<a)jzr+1l=a A=B+< ACBABCA
A-0=0 A#D—> Bz e A)(A<z+1)

In P-def, ¥ comprehension scheme is used. The greater power than that of Vj is
given to it by adding function symbols for all polytime computable string and number
functions. The polytime functions are defined as a closure of ACy functions (ones obtained

using XF-COMP and minimization on these) under limited recursion and composition.
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Vi-Horn Is an Extension of 1

We can show that, given an ACj relation, we can represent it as a SO3-Horn formula.
That implies that V;-Horn contains V4. It is a proper inclusion, since parity, which is not

an AC) relation, can be represented in SO3-Horn.

3.1 Changing the Order of Quantifiers in SO3-Horn.

Lemma 3.1 (Quantifier Exchange rule).
Vi-Horn b Vy < 63X}, ... 3X16(X",y) ¢ 3X), ... AX\Vy < bp(XY, ..., X1 ),

where ¢ is a Horn formula with respect to Xy ... Xy with no second-order quantifiers.

Note that the length of X; is bounded by ¢; = 5(a; +b)(a; +b+ 1) +b.

Proof. For clarity, we will consider only the case of £ = 1. The case of k£ = 0 is trivial,

and for £ > 1 we just repeat the same reasoning for k variables X; simultaneously.

1. AXVy < bp(X W, y) — Vy < bIX'¢(X", )
Let b be some fixed number. Suppose IXVy < bp(X¥, y) holds. Since pairing
function is a bijection, for every y it is possible to find a unique set X', containing

¢ for which pairs of indices < y,7 > are in X. If there are no such i, X is empty;

16
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| X'] < |X]. Such X" is the 4™ row of X by the definition of a row, and so ¢(X’,y)
holds iff ¢(X¥, y) does. If ¢(X ¥, y) holds for some y < b, then X% is a witness
for AX'¢(X’,y). Since ¢(X¥, ) holds for every y < b, Vy < bIX'¢(X’,y) holds as

well.

2. Yy < bAX'p(X',y) — IAXVy < bp(X¥, y)
Since ¢(X, y) does not contain any second-order quantifiers, ¢ = IXVy < b¢(X[y], Y)
is a SO3-Horn formula. Then, we can obtain a characteristic string Z of ¢ from

the comprehension axiom, and state the induction for Z (induction on b).
(Z(0) AVb < 2(Z(b) = Z(b+1))) = Z(2)

Let b = 0, then Vy < 0¢(X, y) holds for any X and ¢. Therefore, 3XVy < 04(X, y)
holds.

Now we need to show Z(b) — Z(b+ 1).

Here, Z(b) gives us 3YVy < bp(Y¥ y). By assumption that Yy < b+13Y'¢(Y",y),
AY'¢(Y’,b). Since pairing function is a bijection, sets Y and Y are disjoint. Define
X to be X = YUY’ Since it contains exactly those pairs with y < b as a
first element that are contained in Y, and pairs with b as a first element that are
contained in Y/, X = YW iff y < b, and X" = Y". Therefore, this X is a witness

for AXVy < b+ 1¢(X¥, y), and thus Z(b+ 1) holds. By induction, Z(z) holds.
U

Corollary 3.2. FEvery formula V that consists of second-order 3 and first-order bounded
V quantifiers (in any order), followed by a quantifier-free formula ¢, which is Horn with
respect to the second-order 3 quantifiers, is provably equivalent to a SO3-Horn formula

U’ in canonical form.

Proof. We can prove this statement by induction on the number of FO quantifiers in the

formula. That is, we will prove that if all formulae with at most £ FO quantifiers can be
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converted to canonical form, then a formula with £ + 1 FO quantifiers can be converted
to canonical form.

The basis is when there is only one FO quantifier, Vz. Consider the subformula
starting with it, ¢» = Va < b3Y7...3Y,0(Y1,...,Y,). By lemma 3.1, ¢ = ¢/ =
Ay} ...V Ve < bp(Y(x),..., Y, (x)). By replacing ¢ by ¢’ in the original formula,
we obtain an equivalent formula in the canonical form.

Suppose now that a formula contains k£ + 1 FO quantifiers. Let Vx be the outermost
FO quantifier. Consider the subformula @) = Vx¢. Here, ) has k£ FO quantifiers, and so
by induction hypothesis it can be converted to an equivalent formula in the canonical form
Y'. That is, ¢’ = 3Y,,...3Y ¢, where ¢ does not contain any second-order quantifiers.
Now we can apply lemma 3.1 again to move Vz inwards past 3Y,,...3Y;. That gives us

a SO3-Horn formula in the canonical form. O

We can now use the term SO3-Horn to refer to the formulae with mixed quantifiers

of the form described in the corollary above.

3.2 Converting ©F Formulae to SO3-Horn

The restriction on the form of formulae for ¥2-Horn comprehension scheme does not allow
us to apply XE-Horn-COMP to first-order and ¥ formulae directly. The problem arises
because of the existential first-order quantifiers, which are not allowed in the SO3-Horn
formulae. However, it is possible to create an equivalent SO3-Horn formula, using the
following construction. The idea is to simulate a quantified first-order variable x by
a universally quantified first-order y and two second-order variables, P, and P,. This

construction is repeated for all first-order quantifiers.

Ezample 3.1. In the simplest case, consider a ¥ formula v = 3z < a¢(x), where ¢
is first-order quantifier-free with string and number free variables. Since there are no

string quantifiers in ¢, ¢(x) can safely be negated (input variables are negatable). The
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corresponding SO3-Horn formula is

¥ = 3P3PVx < ad' (P, P, x),
where ¢’ = a A B An A (is first-order Horn formula, consisting of

e Initialization:

a = P(0) A (=P(0) V ~P(0))
e Restriction:

f=(=Plx+1)V —P(m +1))
e Transition and propagation:

n=(p(x) = Plx+1)) A (=p(z) A P(z) = P(x+1)) A (P(z) = P(z +1))

e End condition:

¢ =P(a)

Here, the length of P and P is limited by a+1, since a is the largest referenced index:
P(a) and P(a) contain the resulting values.

The role of the initialization is to set one of P(0) and P(0). The condition (—=P(0) V
—P(0)) forces at least one of the predicates to be false in 0, so exactly one of P(0) and
P(O) is set. If, as in this case, the original quantifier is existential, then we are looking
for a witness and initialize with P(0) = 1 (and, thus, P(0) = 0) to state that “no witness
found yet”. In the case of universal quantifier, we initialize with P(0) = 1 to state that
“no counterexample found yet”.

For any fixed index x > 0, transition and propagation force one of the two predicates
to hold, and restriction forces at least one to be false, so that the predicates P(x) and

P(z) always have the opposite values. If the witness is found now (¢(x) holds), or was

found before (P(z) holds), then P(x + 1) is set. Otherwise, the condition of the third
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clause holds, and P(z + 1) is set. Once P(z) is set, it continues to hold for larger values
of z, up to (and including) a, and thus P(a) holds iff a witness was found. That fact is

expressed as the end condition.

This example corresponds to the base case for converting a formula with alternat-
ing first-order quantifiers to SO3-Horn form. If the innermost quantifier is a universal

quantifier, then & and 7 have to be changed slightly: in o, P(0) becomes P(0); n becomes

n=(=p(z) = P(x+ 1)) A (¢(x) A P(x) = Pz + 1)) A (P(x) = Pz +1)).

The end condition is only necessary for the conversion of the outermost first-order
quantifier; however, equivalents of other conditions are needed for the conversion of each
preceding first-order quantifier as well.

After we have converted a subformula starting with i"* quantifier, we can check its
truth value by checking which of P, and P; holds with the bound for i variable as the
last parameter. By construction exactly one of them holds; that allows us to check the
value of the subformula without negating it. Thus, when we write the conditions for the
i'" quantified variable, we only need access to the two predicates created for i — 1-th
quantifier. They play the role of ¢ and —¢ of the base case.

Suppose we are converting i quantifier (counting from the innermost). At this

moment, the formula is of the form

Ui = Qg < g Qi @i < 4;1Qiw; < a; 3Py < a;q +13P-y < a1 + 1
AP <aiq...ag(ag + 1)3]51 <ajq...a9(a + D)V, <apq... Vo, < a1,
(3.1)
where quantifiers @)y . .. Q; are the original first-order quantifiers. The order of the first-
order quantifiers and the constructed second-order quantifiers corresponds to the order

of the original quantifiers. !

'In this and some of the following formulae the bounds on the length of the second-order variables
are stated explicitly for clarity: 3P < a means that IP(|P| < a4+ 1).
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During the i** step of the construction, we are concerned with the subformula starting
with ;. It has zy ... x; . as free variables. We are replacing Q;x; by HPiElf’iin, then, us-
ing the Quantifier Exchange lemma, we move Vz; inwards to place it after all second-order
quantifiers. That introduces a new dimension to each of the arrays P;_q, Py,....,P, P
This way, when we finish our construction, P, and P, will have the number of dimensions
equal to the number of the first-order quantifiers k; each pair of strings will have the
number of dimension one less then the previous pair. The newly constructed P; and P
have length a; + 1, but when we increase the dimension, we only consider the possible
values for the first-order variables, not including the bound. That is, after we move
Vz; inside past the second-order quantifiers, each of the previously constructed arrays
receives one more dimension of length a;. Thus, the two innermost string variables have
length a;...as(a; + 1), the next two have length a;...as(as + 1) and so on.

Now, we can construct the formula

U =Qrrp < ap ... Qiy1Tip1 < gy

P, < ai(a;y +1)3P; < ai(a; ; +1)

ElPl §ai...a2(a1—|—1)5|]51 §ai...a2(a1—|—1)

Vo, < a;Vr; 1 <a;1...Vr1 < a10;.

The first-order part of ¥; will be ¢; = ¢;_1 A a; A B; Am;, where ¢;_; is the first-order
quantifier-free part of the formula constructed on the previous step, and the last three

subformulae of ¢; play the same roles as the corresponding subformulae of the base case:

e Initialization. If (); is an existential quantifier, then

P;(0) A (=P,(0) vV =P;(0))

Q;
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Otherwise, if (); is a universal quantifier

a; = Fi(0) A (-F(0) V ~F(0))

e Restriction:

e Transition and propagation. If (); is an existential quantifier, then

ni =(Pi—1 (%, ai-1) = Pi(x; + 1)) A (Py(x;) — Pi(z; + 1))
A (Pioi (i, ai-1) A Pi(7;) = Pi(w; + 1))

Otherwise, if (); is a universal quantifier

n; E(f’i_l(xi, a_1) — P,(mz +1)) A (P,(mz) — f’l(mz +1))

A (Pi1 (i, ai1) A Pi(x;) — Pi(z; + 1))
If Q; = Qg (it is the outermost quantifier), then ¢; = ¢; 1 A a; A 5; An; A ¢, where
¢ = Pi(a;).
The resulting formula will be in SO3-Horn form.

Remark 3.3. In the construction above, it is not, in general, necessary to convert the
outermost universal quantifiers, since the corresponding variables can be treated as free
variables. We can get a SO3-Horn formula by converting quantifiers up to the outermost
existential quantifier, and then propagating the remaining universal first-order quantifiers
to place them in front of the constructed universal first-order quantifiers, so that all
second-order quantifiers are in front. In this case, the end condition is stated for the
outermost existential quantifier. The example 3.2 illustrates the weak conversion.

We will prove the correctness of the strong conversion. Clearly, the correctness of the
strong conversion implies the correctness of the weak: if we have a SO3-Horn formula

and we universally quantify some of its free variables, then, by the corollary 3.2, we
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can convert it to an equivalent SO3-Horn formula by moving the universal quantifiers
inwards. For the other direction, if our construction is correct, then conversion of the

outer universal first-order quantifiers does not change the truth value of the formula.

Example 3.2. Let

Y=V <ady < WVz < c oz, y, 2).

Weak conversion produces the following SO3-Horn formula:

3P, < a(b+ 1)E|I5y <a(b+1)3P, < ab(c+ 1)E|I5z <ab(c+ 1)V < aVy < bVz < ¢

(

Pz(x,y,())/\(—' z(l‘,y,O)\/—'Pz($,y,0)) ai

AP, (z,y,z+ 1)V =P, (x,y,z + 1)) b1

;

AP,(x,0) A (=P, (x,0) V =P,(,0)) o
APy (2,y + 1) V =B, (z,y +1)) By
0 =24 A(P.(7,y,¢) = Py(v,y + 1) A (Py(x,y) = Py(z,y + 1)) 72

NP, (7, y,¢) N Py(z,y) = Py(z,y + 1))

AP, (z,b) ¢

\

Theorem 3.4. Let ¢ be a S formula with k quantifiers. Let U be the formula obtained

from 1 by the above construction. Then

Vi-Horn b= < U,
and ¥ is a SO3-Horn formula.
Proof. First, we need the following lemmata:

Lemma 3.5. Let a be a constant, and X and X some sets, such that Vi-Horn b Vi <
a(X (i) & ~X (i) We define P using ©P-Horn-COMP on the conjunction ® of the fol-

lowing formulae:
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1. =P(0)

2. Vi < a(P(i) = P(i + 1)),

3. Vi < a(X(i) — P(i + 1))

4. Vi <a(P(i+1) AX(i) = P(i)).

Then

Also,

Proof.

Vi-Horn = ®(P) — (P(a) <+ 3i < aX(1)).

the defining formula for P is SO3-Horn with respect to X and X'.

1. (i <aX(i)) — P(a)
(Fi < aX(i)) — P(i + 1). We can show by induction that Yz < a(P(z) —
P(z + 1)) A P(i) — P(a). XB-Horn-COMP guarantees the existence of Z, which
is a characteristic string of ¢(z) = P(z + 1), where z + i < a. Now, P(i) — Z(0)
and Vo < a(P(zx) = P(x+1)) > Ve +i<a(P(x+i) > Plx+i+1) > Vz+i<
a(Z(z) — Z(z +1)). By applying induction to Z we get that Z(b) holds, where
b+ z =a. Since P(a) <> Z(b), P(a) holds.

P(a) — Fi < aX (i)

There is at least one element in P, namely a, and so |P| > 0. By the Least
Number Principle, there exists the minimal element = of P. Since P(0) is false,
z # 0. Then, there exist i s.t. i +1 = . But P(i + 1) A X(i) — P(i), that is,
P(i+1) — (P(i) V X(i)). Since z is the minimal element of P, P(i) is false. Thus,
X (7) holds, and so there exists at least one element (namely, i) in X.

O

Lemma 3.6. Let P’ and P’ be two second-order variables, such that on the first a indices

P'(i) > =P'(i).
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1. Suppose P and P satisfy initialization, restriction, transition and propagation rules
for converting an ezistential quantifier, with P' and P' as P,_y and P,_, and bound

a. Then P(a) is true iff there is at least one element in P', and P(a) <+ —=P(a)

2. Suppose P and P satisfy initialization, restriction, transition and propagation rules
for converting a universal quantifier, with P' and P' as P,y and P,_, and bound

a. Then P(a) is true iff there is at least one element in P', and P(a) <> —P(a)

Proof. Note that in both cases at most one of P(i) and P(i) can hold for every i, by
restriction and initialization. If we show that for every ¢ < a one of them holds, they
will always have the opposite values. Suppose we are using the rules for an existential
quantifier conversion. Then P(0) is false and P(0) is true.

Suppose that at some point both P(i + 1) and P(i + 1) are false. ©5-Horn-COMP
with ¢(z) = (~P(z) A ~P(z)) guarantees the existence of a set of indices i < a on which
both P and P are false. Since by assumption this set is nonempty, there is a minimal
element z in it by LNP. We know that > 0, since P(0) holds by the initialization.
Then, there exists ¢, such that ¢ + 1 = x. Since P(i+ 1) is false, both P(i) and P'(i) are
false by propagation and transition rules. Since P(7) is false and x is the smallest element
on which both P and P are false, P(i) holds. Since P'(i) A P(i) — P(i + 1), P'(i) must
be false. But that cannot happen, since by assumption P'(i) <> =P’(i). Therefore, P(x)
and ]5(33) always have the opposite values on x < a, including the case x = a.

In order to use lemma 3.5 with P" as X, we need to show its last condition; the other
three follow from the transition and propagation rules. Suppose that it does not hold
for P, that is, there is an element i for which P(i 4+ 1) A =P'(i) A =P(i). Since —~P'(7),
by assumption P'(i) holds. Since ~P(i) is true, P(i) holds, because P(i) and P(i) have
opposite values. For the same reason, and since P(i 4 1) holds, P(i 4+ 1) should be false,
but P'(i) A P(i) — P(i + 1). Therefore, the last condition of lemma 3.5 holds, and so

P(a) holds iff there is an element on which P'(7) is true.
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The proof of the second part is almost identical, with P and P’ replaced by P and

P’ and the appropriate rules. O

Now we will show that the following statement holds: if ¥ is obtained from ¢ by the
strong conversion, then provably ¢ <> W. Moreover, for £ > 1 the values of the outermost
second-order variables P, and P, on their bound ay, are such that Pi(ag) < ﬂf’k(ak) U,
and there is an end condition clause Py(a;). We will prove this statement by induction
on the number of quantifiers in ). The induction hypothesis will state that we can prove
it for the formulae with £ quantifiers; the induction step will show that we can prove it

then for the formulae with £ + 1 quantifier.

1. When k£ = 0, no conversion is done, so W is identically equivalent to ¢). Moreover, ¥
is a SO3-Horn formula since it does not have any existentially quantified first-order

variables.

2. Suppose k = 1. That is, ¥ = Qz < a¢(zx), where ¢ is quantifier-free, and all string

variables in it are free variables. We need to convert it to
¥ =3PIAPVi <aa ABANAC.

SB_Horn-COMP gives us a string Z corresponding to the values of ¢(z) on z < a
(with respect to the variables free in 1)). We can similarly obtain the string Z
which represents the complement of Z. Now we can apply the lemma 3.6 with Z
and Z corresponding to P’ and P'. By construction, the values in these P’ and P’
will be opposite for all indices < a. By the lemma 3.6, P(a) <> ~P(a). If Q was
an existential quantifier, (3i < aZ(i)) <> P(a). By construction, Z is the string
containing witnesses for Jx¢(x), so Z is nonempty iff a witness was found. That

is, (Fi < aZ(i)) <> (Fi < ap(i)). So, P(a) correctly states the truth of .

If Q was a universal quantifier, (37 < aZ(i)) <+ P(a). Since Z contains all = on
which ¢(z) is false, Z is nonempty iff a counterexample was found. 3i < aZ(i) >

i < a=¢(i) < Vi < ap(i).
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3. Assume that for all ©F formulae with at most k quantifiers the statement above
holds, and k& > 1. We need to show that it holds for a ¥ formula ¢ with k + 1
quantifier. Thus, ¢ = Qr < a¢(x), where ¢(x) is a formula with = as a free
variable and k first-order quantifiers. By induction hypothesis, we can convert
¢(x) to obtain ®(z), in which the outermost quantifiers P’ and P’ contain, on their
bound b, the value of ® for various values of x. One of the clauses in ® is of the
form P’(b), corresponding to the end condition. For the purpose of the conversion
we remove this clause from ®, and attach new o A § An A (. We also introduce
existentially quantified SO variables P and P, and change @ to V. Now we need to
show that the statement we are proving holds for ¥. By repeating the discussion
for the previous case with P' and P’ instead of Z and Z we get that P and P always
get the opposite value on i < a, and we can apply lemma 3.6 to show that P(a)
(and P(a)) contain the correct values. That immediately gives us the correctness

of the statement.

Theorem 3.7. If ¢ is a theorem of Vy, then Vi-Horn = 1.

Proof. Let a formula ¢ be provable in V{. Since all the axioms and rules of 1} are
contained in Vi-Horn, the proof in Vi-Horn can be the same except for the instances of
Y#-COMP. When such instance is encountered, we can replace a X formula in it by its
constructed equivalent (making it an instance of ©F-Horn-COMP), and attach a proof

of their equivalence (from the theorem 3.4). O



Chapter 4

Collapse of V-Horn to V|-Horn

Intuitively, since SO3-Horn corresponds to polytime, which is closed under complemen-
tation, it should be possible to represent a formula starting with alternating second-order
quantifiers by a V;-Horn formula. We can prove it by formalizing in V;-Horn the Gradel’s
proof of the corresponding collapse. The main part of the Gradel’s proof is showing that
every SO3-Horn formula with P as a free second-order variable holds for all values of P
iff it holds for all P that are false in at most one point. We will not formalize the proof

of this claim in Vi-Horn; rather, we will prove the following equivalence directly.

Theorem 4.1. Let ¢ be a first-order quantifier-free formula. Then.

Vi-Horn FYP3Qy ... 3Q\V2(P, Q) <

where ¢, is obtained from ¢ by replacing every atom of the form P(x) by an atom x # y,
and in ¢y, P(z) is replaced by x = x. Also, t is the upper bound on the length of P, and

Z denotes bounded first-order variables.

Proof. The — direction is trivial: since IQVzZ@(P, Q, Z) holds for any value of P, it should
hold for the values of P described by x # y and # = x. Therefore, all ¢,, as well as ¢,
will hold.

28
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To prove the other direction, consider the formula 3Q,, . .. 3QVz¢(P, Q), where P is a
free variable. For a fixed P, we can construct the witnesses for ¢ given the corresponding
witness for ¢,. Each @; in ¢ will be a characteristic string of a SO3-Horn formula ¢;(P),
in which P is a free variable; thus, the existence of it will be given by YZ-Horn-COMP.

In 1;(P), we need to consider two cases: either P holds on all = < ¢, or not. Clearly,
in the first case the witnesses for ¢ are witnesses of ¢;; in the second case they can be
constructed from the witnesses for ¢, for different y. Since P can be treated as a free

variable, we can check if it holds everywhere using the formula

a =3538Vx < £(S(0)) A (S(E)A

(—P(z) = Sz + 1)) A(S(z) = S(x + 1)) A (P(z) A S(x) = S(z+1))

We want to be able to refer to the witnesses of ¢, for several values of y simultaneously.
For that, we move the quantifier Yy < ¢ inwards past 3Q, using lemma 3.1, and rename

witnesses of ¢, to Q' to obtain
3QIQVy < 16, (QM) A ¢(Q").
Now, we construct v;(P, s) for each i as
Ui(P,s) = Yy < ta A (S(t) = Q4(s)) A (S(£) = =P(y) A (S(t) — QY (s)).

The existence of the characteristic strings @Q; of v;(P) are given by ¥-Horn-COMP.
Now we need to show that they are witnesses for 3Q¢(P, Q). As mentioned above, if P
holds on all z < ¢, then @)} are the desired witnesses; and in that case, by construction,
Q; is equal to Q. To show that (); are the correct witnesses for the case where P is

falsified somewhere, we need the following lemma.

Lemma 4.2 (based on Gradel’s Claim [Grad92]). Let C be a clause in ¢. Suppose

that P s falsified in at least one point. If C' is falsified, then there exist a y, such that

3QY ... 3QY0,(QY) is false.
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Proof. Since ¢ is a SO3-Horn formula, there is at most one atom in the conclusion. If
C is false, then this atom is false, and all the other atoms in C' are true. There are three

cases:
1. This atom is of the form P(x) for some x. Then, we take y = x

2. This atom is of the form @Q;(x) for some x, 7. Then, we take y ¢ P such that z & QY.

Such y exists since P is false in at least one point.
3. Otherwise, we take any y € P.

Now, we can show that the truth value of C' will be the same if all @;(z) occurring
in C' are replaced by @Q?(z), and all P(z) are replaced by x # y. By the choice of y,
the conclusion will be false. We know that all atoms in the assumption are true. If
P(z) occurs in the assumption, then P(x) holds, and so z # y. If we replace P(z) by
x # y, the value of C' will not change. If @;(x) occurs in the assumption, then since
Qi(r) — QY(x) for all z and y ¢ P, and by construction y ¢ P, QY(x) holds. Thus, we
can replace Q;(x) by @QY(x) without changing the truth value of C. Any other kind of
an atom has a truth value independent from the value of P and ();, and so it has the

same value in the corresponding clause in ¢,. Therefore, C' has the same truth value in

¢y, and so C'is falsified in ¢,. Thus, 3QY ...IQIVz¢,(QY) is false. O

Now, by the lemma 4.2, if C' is a clause of ¢, then C' holds for the given values of the
second-order variables. Therefore, all clauses in ¢ hold, and thus ¢ holds. Since P was

an arbitrary second-order variable, this shows that VPAQ)y ...3Q;VZ¢ holds. O

Corollary 4.3. A formula ¥ with any SO quantifiers and bounded universal FO quanti-
fiers, whose quantifier-free part ¢ is Horn with respect to quantified second-order variables

can be provably converted to a SO3-Horn formula in canonical form.

Proof. A quantifier-free formula is in SO3-Horn form. If ¥ has only one quantifier, then

it is SO3-Horn unless the quantifier is SO V. In this case we replace it by an equivalent
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SO3-Horn formula given by the theorem 4.1, which can be converted to canonical form
using corollary 3.2.

Suppose we can provably convert formulae with &k quantifiers. Let ¥ be a formula
with £+ 1 quantifier and quantifier-free part ¢ which is Horn with respect to quantified
SO variables. Consider the subformula under the outermost quantifier. We can treat that
variable as a free variable in the subformula, and convert it to obtain a SO3-Horn formula
® in canonical form. Note that neither the conversion of the universal SO quantifier nor
quantifier exchange introduce new negated variables, so if the outermost quantifier is SO,
and ¥ did not have negated occurrences of that variable, ® will not have any negated
occurrences of it either. Therefore, ¥ is equivalent to ® preceded by the first quantifier of
¥. Now, that quantifier is FO V, then we can move it inside using the quantifier exchange
rule. If the quantifier is SO 4, we are done, and if it is a SO V, we can apply theorem
4.1 to obtain a formula that is easily convertible (using quantifier exchange rule) into a

SO3-Horn formula in canonical form. O

Therefore, any formula that does not have FO 3 quantifiers, such that its quantifier-
free part is Horn with respect to quantifier second-order variables can be provably con-

verted into a SO3-Horn formula in canonical form.

Theorem 4.4. Vi-Horn = XB-Horn-COMP, where P -Horn-COMP is a comprehension

scheme for SO-Horn formulae.

Proof. Let ¥ be a SO-Horn formula, used in an instance of ¥Z-Horn-COMP. We can
create an equivalent SO3-Horn formula W', using the proof from corollary 4.3. Then,

Y B_Horn-COMP gives us the existence of the characteristic string of ¥ = ¥’, U



Chapter 5

Encoding a Run of SOd-Horn-SAT

Algorithm

In many cases we need to check a truth value of one SO-Horn formula to determine the
value of another. Moreover, often we need to be able to check the values of both the
formula itself and its complement. In order to keep our “outer” formula SO-Horn, we
have to check them by checking just the values of a constant number of boolean variables.
We encountered a similar problem when we converted ACy formulae to SO3-Horn form:
in order to convert the outer quantifiers we needed the value of the formula under them.
But, in that case, we could negate the quantifier-free part of the formula; we cannot do

it for an arbitrary SO-Horn formula.

The technique that will allow us to handle the general case is encoding a run of a
SO3-Horn-SAT algorithm on a given SO-Horn formula by a SO3-Horn formula, and
then checking the result of the run. The encoding will have an additional useful property

that all variables in it will occur together with their ~-counterparts.

32
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5.1 SOd-Horn-SAT Algorithm

Suppose we are given a SO-Horn formula ®. We want to construct a SO3-Horn formula
RUNg which will encode the run of the SO3-Horn-SAT algorithm on ®. First of all, be-
cause of the SO-Horn hierarchy collapse theorem we only need to consider formulae with
S04 quantifiers. Moreover, we can represent all SO3 quantifiers as one SO quantifier
corresponding to an array of the original ones. Therefore, we just need to consider the

case when

® =dPVx, < by...Vx <bl¢(P,x1,...,xl).

Here, ¢ is SO3-Horn with respect to P. Let m be the number of clauses in ¢. Let a be
the successor of the largest index of P in ¢, i.e., all indexed elements of P are less than
a. In general case, ® can contain first-order and second-order free variables; to simplify
the notation, we will not write them explicitly.

The first step of the SO3-Horn-SAT algorithm is converting ® to propositional form
by considering b = b1 b, . .. b; copies of ¢, and, in each copy, setting first-order variables to
a different [-tuple of values. The conjunction of these copies is equivalent to the original
¢ with first-order quantifiers. That allows us to evaluate all terms and atoms with the
first-order relation symbols, i.e., atoms of the form f(z) = ¢(z), f(z) < g(x), etc. If, at
this step, any of the clauses becomes identically equal to (1 — 0), then & is false, and
so the algorithm should return “false”. If a clause is valid (i.e., its conclusion becomes
identically true, or its assumption identically false), then we do not need to consider this
clause. This way, we can remove all atoms with the first-order relation symbols from all
clauses, as well as mark off the valid clauses so as not to consider them later.

This results in a conjunction of the clauses that only contain atoms of the form
P(f(vq,...,u)) for some values vy,...,v of x1,...,2;. Distinct atoms assume values
completely independently, and so can be treated as distinct propositional variables. Now

we can run the propositional Horn satisfiability algorithm on the resulting propositional
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Horn formula.

We start with all propositional variables P’(7)s initialized to 0. On each step of the
algorithm we will look for unsatisfied clauses and satisfy them by setting the atoms in
their conclusions to 1. This may result in some other clauses becoming unsatisfied. We
can view this process as “removing” the atoms we set (and the clauses that become
valid under our partial truth assignment) from the formula. A clause is unsatisfied iff its
assumption is empty (everything that was there is set). If its conclusion is also empty
(as in the case where it contains an atom with a first-order relation which evaluated
to 0), then the clause cannot be satisfied and thus the whole formula is unsatisfiable.
Otherwise, there is an atom of the form P(7) in the conclusion which can be set to satisfy
the clause. Note that we can set atoms in the conclusions of all currently unsatisfiable
formulae simultaneously.

We need to repeat these steps until either we find a false clause (1 — 0), or there are
no unsatisfiable clauses left. Since we need to set at least one atom at each step, the run
of the algorithm will take at most a steps. Thus, to check if a satisfying assignment has
been found, we only need to check if there is a clause with empty assumption and empty

conclusion at step a. If not, the formula ® evaluated to “true”.

5.2 Allowing a Restricted Version of FOd Quantifiers

In numerous places in the following construction we need to determine if there exist an
index ¢ such that a set of second-order variables X;...X,, Y all hold on 7. Assuming
that “~”-versions of all these variables are available, we can do it using an extension of
the clauses in Lemma 3.5. We will use the following notation:

Assume that we want to find i < a in Y, such that the conditions X (i),..., X(7)
hold. For that we will introduce two existentially quantified second-order variables Sy

and Sy (the search variables are denoted by S and S, with the name of the variable in



CHAPTER 5. ENCODING A RUN OF SO3-HORN-SAT ALGORITHM 35

which we are searching as a subscript). We require Sy (a) to hold iff there is i < a, such
that both Y and conditions hold on i. As usual, Sy corresponds to the complement of
Sy. We denote by SEARCH(a, X, ..., X,,Y) the conjunction of the following clauses,

preceded by 35,35y Vi < a:
1. 5y(0)
2. (=Sy (i) V =Sy (7))

3. (Xi()AXo(i) A . AX(i) ANY (i) = Sy (i + 1)) A (Sy (i) = Sy(i + 1))

4. (Sy (i) AX1(i) = Sy (i+ 1) A...A(Sy (i) A X(i) = Sy (i +1)) A (Sy (i) AY (i) —
Sy(i+1))

If we need to use an [-tuple of variables as a search index, we can do so by a simple
modification of the above formula: instead of checking all values between 0 and a, we
check all [-tuples of possible values. The order does not matter, as long as (0,...,0) is

the first, and (by, ..., ;) is the last, where b; is the bound for the i-th variable.

Remark 5.1. In general, we want to use the variables Sy and S’Y outside of the search
macro itself. For that, the two quantifiers 3Sy3Sy need to be moved outside the scope
of the formula where Sy and Sy are used, possibly applying lemma 3.1, in which case
they can acquire additional dimensions.

Thus, Sy and Sy would always have a scope larger than that of the search macro. The
main reason for placing 35y3Sy inside the definition of the search macro is simplifying
the notation: otherwise, these quantifiers would have to be explicitly mentioned every

time the search macro is used, cluttering the formula.

Lemma 5.2. If Sy and Sy are defined in the SEARCH(a, ..., X,,Y) macro above, then
Vi-Horn proves that Sy (a) holds (and Sy (a) does not hold) iff there exists i, such that
Y (i) holds and all conditions X;(i) are satisfied.
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Proof. 1. If there is an index ¢ which satisfies all conditions, then Sy (a) holds.

Assume (X7(i) A ... Xs(7) AY(4))) holds. Then, Sy (i + 1) holds. Therefore, Sy
is nonempty. Then, by the Least Number Principle there is a minimal element
ip = i+ 1 in Sy. There exist (by XP-Horn-COMP) a string Z, such that Vj <
b(Z(j) <> Sy(ig + 7)), where b+ ig = a. Since Sy (i + 1) holds, Z(0) holds; since
Vi < aSy(i) = Sy(i+1),Vj < bZ(i) — Z(i + 1). Thus, by induction, Z(b) holds.
Since Sy (a) <> Z(b), Sy (a) holds.

2. If Sy (a) holds, all conditions were satisfied for some index i.

Since Sy (a) holds, Sy is nonempty. By the Least Number Principle, there is a
minimal element 7 in Sy. Because of the conditions (Sy (0)) A (—=Sy (0) V =Sy (0)),
Sy (0) is not set, so ig # 0. Then, there is j, such that j + 1 = iy. Consider
the behavior of Xi(j),...,Xs(j),Y(j). We assumed that they are not all true
for any index, and so they do not all hold on j. Suppose, wlog, that X;(j) does
not hold. But then Xj(j) holds. Since iy is the minimal element of Sy, Sy ()
does not hold and so Sy (j) does. Therefore, by the item 4, Sy (j + 1) holds, so
by (Sy(ig)) A (=Sy (i) V =Sy (ip)), Sy(ig) does not hold, which contradicts our

assumption that at least one of X, (i), ..., Xs(ig), Y (i) is not satisfied.

5.3 Construction

Now we can proceed to construct a formula RUNg (R, R), encoding the run of the algo-
rithm above. For each second-order variable which we will use, we will create its “~"-
counterpart, so that we can avoid the problems created by inability to negate quantified
second-order variables and to use existential first-order quantifiers (we will use SEARCH
instead). The table 5.3 lists the variables used in the construction.

Note that R and R are treated as free variables in RUNg. They are intended to be
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existentially quantified just outside the scope where they are being used. In that sense,
they are treated similarly to the search variables in SEARCH. Also, since the value of a
formula when the values of all free variables are fixed is either “true” or “false”, R and
R are boolean variables. To make them set variables, they can be viewed as 1-element
(or empty) arrays, so we can think of checking the value of R(0) and R(0) when referring
to R and R. In most cases we are interested in a set of values of the formula for some
range of values of its free variables; then R and R, moved outwards using the Quantifier
Exchange lemma, become arrays of values of the formula, indexed by these free variables.

First, we need to define the set of clauses for our algorithm. Since we need to consider
b copies of ¢, we can no longer keep the original clauses as clauses, since there will not
be a constant number of them. Instead, we will store the information about the atoms in
the clauses (P(i)’s) in two [ + 2-dimensional matrices, C' and D. The matrix C specifies
atoms P(f(Z)) appearing in the assumptions of the clauses; the matrix D similarly holds
the table of atoms in conclusions. Thus, C(i,xy, ...,z j) is set iff in the assumption of
the original clause i there is an atom P(f(z1,...,x;)) for some f, and f(xq,...,z;) = j.
Our RUNg will be a conjunction of three parts: initialization («/), step description (/3)
and end condition (v A ¢). All the formula is preceded by the following quantifiers, for

the variables that are used throughout the algorithm:

3C3C3ADADAVIVIATAVE < a

Initialization (o). During this step we evaluate first-order relation atoms, define clause
matrices C' and D, and a validity matrix V. Matrix V' will specify which clauses are valid
because of the settings of first-order atoms. The initialization part of the formula contains

the following quantifiers (with the scope limited to the initialization):

VY <b1...\V/IL'l <bl
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1. We will place all first-order relation atoms in the assumption, because we can negate
them and so we can move such atom from the conclusion to the assumption and
negate it. A clause ¢ with first-order atoms f;;(Z)0gin (Z) . . . fie(Z)0gi (T), where
[ is one of =, #, <, >, <, >, can become valid for a given setting of z if at least
one atom evaluates to 0. It can become unsatisfiable if there are no other atoms

in it, the conclusion is empty and all atoms in the assumptions evaluate to 1. We

define V, V as follows:

(=fi1(2)0gi1 (Z) = V (i, Z)) A ... A (= fie(@)0Ogi (T) — V (4, T))

Note that if there are no atoms of the form P(7) in a clause 7, then we can check if
it is unsatisfiable for some Z by checking if V' (i, %) is set for some Z. We can do it

with SEARCH(by, ..., b, V (i)). If there are no first-order atoms in the clause i, we

set V(i) for all 7.

2. Now we can define the clause matrices C' and D. Let f;;(Z) be the functions such
that P(fi;(Z)) occurs in the assumption of i; let g;(Z) be such that P(g;(Z)) is in

the conclusion of ¢. We do the following for each clause ::

C@, 7, fu(@)) A ... NC(i, 7, fu (7)) A D(i, T, g:(7))A

Vo < a((fi(Z) Z oA ... A fin(®) v — C(i,Z,0) A (g:i(T) # v — D(i,%,v)))

Note that if there is no atom P(v) in the assumption of clause ¢ for Z, then instead
we can set C(i, Z) with Vv < aC'(i, Z). Similarly, when there is no atom of the form

P(v) in the conclusion, we set Vv < aD(i, T).
3. We initialize the assignment variable A(t) to Yo < a(A(0,v))

4. We need to force the condition that neither of the variables above can be true



CHAPTER 5. ENCODING A RUN OF SO3-HORN-SAT ALGORITHM 39

Table 5.1: Variables in the encoding of a run of SO3-Horn-SAT algorithm

Name Size Function

P a The existentially quantified second-order variable in the
original formula

C m-by-...b-a| C(i,Z,v) is set iff there is an atom P(v) in the assumption
of the clause ¢ when first-order variables are set to =

D m-by-...b-a | D(i,Z,v) is set iff there is an atom P(v) in the conclusion
of the clause 7 when first-order variables are set to

V m-by-...-b | V(i,Z) is set iff the assumption of the clause i evaluates
to 0 after setting first-order variables to z, but prior to
setting any of P(v) atoms.

A a-a A(t,v) is set iff on step t (or earlier) of the execution of
the algorithm the propositional variable corresponding to
P(v) has been set.

R 1 R is the “result” variable: R is set iff there was an unsat-

isfied clause.

13

together with its “~”-counterpart. Thus, we need to add the following:

Vi <mVry <b...Vo, <b(=V0E .. x) VaV(z, .. x)A
Vo < a(=C(i,z1,...,2,0)V —|C~’(z’, Ty, T, 0))A
(=D(i,z1,...,2,0) V —@(i,xl, ce T U))A
(mA(t,v) V =A(t,v)) A (R V —R)

(5.1)

Step of the algorithm (). On each step of the algorithm we look for unsatisfied
clauses and set the atoms in their conclusions, if we can. A clause may be unsatisfied

if it is not valid and all the atoms in the assumption were set on the previous steps. If
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this condition holds, but the clause is satisfied, then there is an atom in its conclusion
that is set. Otherwise, either there is no atom of the form P(v) in the conclusion, and
thus we cannot satisfy this clause, or there is such atom there, and it is unset, and so we
can satisfy the clause by setting it. Thus, if the clause is not valid and its assumption

evaluates to 1, we attempt to find and set the atom in its conclusion.
VEk < a(f/(z’, ) ANC(i,z,v) ND(i,Z, k) = At + 1,k)) A (A(t, k) = A(t+ 1,k)) (5.2)

For each value k, we set A(t + 1,k) if it was not set at the previous step (A(t,k)
holds) and for each clause where it occurs in the conclusion there is at least one unset
atom in the assumption. We can check the existence of an unset atom in the assumption

of a clause ¢ for £ with

SEARCH(a, C(i, %), A(t)). (5.3)

Now, we check that this holds for all clauses by checking, with search macro, if there
exists a clause (4, Z), which is not valid (V'(4,Z)), in the head of which there is an atom
P(k) (D(i,Z,k)), but there is no unset variable in its assumption (S’A(t)(a)). Note that
SEARCH(a, C(i, %), A(t)) is inside the scope of the universal first-order quantifiers Vi,
this statement; thus, the variables S i) and S A are local to it. The external search
macro is, in turn, under Vk < a. Here, ~ SEARCH(...) means that the condition variable
is the negation (“~"-counterpart) of the search variable of the macro. Now, we specify

A(t + 1) with

Vk < aSEARCH(a, by, . .., b, ~ SEARCH(a, C(i,7), A(t)), V, D(k))A 6.0
5.4
(A(t, k) VAN gD(k) — A(t + 1, k)),

The resulting description of the step, [, is the conjunction of formulae 5.2 and 5.4.

End condition. There are two possible reasons why ® can be false. Either one of the
clauses of ¢ is identically false under a certain assignment z of first-order variables, or

no P exists that can satisfy ¢.
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1. The first case occurs when there is a clause with no variables P(v), and in this clause
all atoms evaluate to 1. We assume that all such atoms are in the assumption, since
if there is a first-order atom in the conclusion, we can negate it and move it to the
assumption. There is a constant number of clauses without P(v)’s. Such clause is

unsatisfiable if S(/(i) holds in

SEARCH(by, ..., by, V (i)) (5.5)

Note that in this case we are creating a separate pair of search variables S\"/(i) and
5},@-) for each clause 7, but since there is a constant number of such clauses, that

does not create a problem.

2. In the second case, ® is false because no P could satisfy ¢. We can check if the
truth assignment satisfies all clauses when the algorithm finishes running, and if it
does not, then there is no satisfying truth assignment for the propositional version
of ® and thus P does not exist. In case when such P exists, P is equivalent to
Al(a).

The clauses that were satisfied by setting a variable in the conclusion during some
step of the execution of the algorithm above will remain satisfied after that step,
since all variables in such clauses are set, and P(v) is never forced to change its
value from 1 to 0. Thus, there is a step ty, at which all unsatisfied clauses are
unsatisfiable. During ¢y, and after it no new variables will be set. So, for all t > ¢,
the value of A will remain the same, in particular, A(¢y) = A(a). There can be
at most a steps during which the value of A changes, since we can set at most a
variables. Therefore, to find out if the partial truth assignment at the last step of
the execution of the algorithm satisfies all clauses we need to check if A(a) satisfies

all clauses.

The clause is unsatisfiable if all atoms in its assumption are set to 1 and there is

no atom P(v) in the conclusion (if there is such P(v), we can set it and satisfy
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the clause.) Thus, we are searching for a clause that has no unset variables in the
assumption (this can be done with the expression 5.3) and an empty conclusion

(this can be done with SEARCH(a, D(i,%))). The resulting search macro is

v = SEARCH(m, by, ..., b, V,~ SEARCH(a, C(i, %), A(a)), ~ SEARCH(a, D(i, 7))

Let us call the resulting search variable S4. Now, S4(m,bs,...,b;) holds iff some

clause is unsatisfiable.

The final end condition ¢ specifies the resulting value of ® by setting R and R. If at
least one of Sy and Sy; for the clauses with no P(i)’s (assume there are k such clauses)

holds, then R is set; otherwise R is set.

C=(Sal(myby, ..., b)) A Sy (b, b) A A Sy (b, b) = R))

(SA(ma bla - -7bl) - ZN%)(Sff(zl)(bla .- '7bl) - R) Tt (SV(zk)(bla - '7bl) - R)

5.4 Example of the Construction
Example 5.1. Let

® =dPVx; < 2Vzy <1

(ry =z +1— P(x1))(P(x1 + 1) = P(x1 + x3))(P(x1 - 3) = @9 < T1)

This formula is unsatisfiable. We can convert it to a propositional formula with three

variables P(0), P(1) and P(2):

' =(0=1— P(0))(P(1) = P(0))(P(0) = 0<0)

(1=1— P(1))(P(2) = P(1))(P(0) —»0<1)
After we evaluate terms 0 =1, 1 =1, 0 < 0 and 0 < 1, it becomes

(P(1) = P(0))(P(0) =)(= P())(P(2) = P(1)),
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since (0 =1 — P(0)) and (P(0) — 0 < 1) are valid clauses. Thus, V(0,0,0) and
V(2,1,0) are set.

Now we initialize C' and D. In C, we set C'(1,0,0,1), C(1,1,0,2), C(2,0,0,0) and
C(2,1,0,0). In D, we set D(0,0,0,0), D(0,1,0,1), D(1,0,0,0) and D(1,1,0,1).

In this case, a = 3. We initialize A(0,0) = 0, A(0,1) = 0 and A(0,2) = 0. Since there
exists a clause (namely, (1 =1 — P(1))) for which the search condition holds, we set
A(1,1). We do not set any other variable. Similarly, at step 1 the clause (P(1) — P(0))
becomes unsatisfied. We set P(0), so A(2) = (1,1,0). Now, at the last step, we would

try to satisfy the clause (P(0) —). This clause cannot be satisfied. So,

SEARCH(3, 2,1, SSEARCH(3,C (i1 ,w2),A(3)) (@), Ssparcu(3,D(i,z1,0)))

makes S4(3,2,1) true. Thus, R is set in the end condition.

5.5 Correctness Proof

The correctness proof will consist of two parts. First, we will show that, given a SO3-Horn
formula ®, we can always construct a formula RUNg, representing the run of the Horn
satisfiability algorithm on ®. That is, the formula obtained in the construction above
always holds. Then, we will show that the result variable R is set iff the formula is

satisfiable; otherwise, R is set.
Lemma 5.3. If RUuNg (R, R) s constructed as above from a SO-Horn formula ®, then
Vi-Horn - 3IRIRRUNg (R, R).

Moreover, Vi-Horn proves that every ~ counterpart of a variable evaluates to the com-

plement of that variable.

Proof. We are trying to show that we can always correctly encode a run of the Horn

satisfiability algorithm as a formula. That is, we can always initialize C, D, V" and A(0)
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and their ~-counterparts (« holds), describe a step of an algorithm (/5 holds), look for
an unsatisfied clause (v holds), and set the corresponding “result” variable (¢ holds).

Consider the initialization part. All of V', C' and D are uniquely determined, since an
atom is either present in the clause, or absent. We are setting exactly one of V (i, Z) and
V (i, Z): first is set iff there is a false first-order atom in the assumption of the clause i for
z, second is set iff all the first-order atoms are true, so at least one is set; the restriction
condition 5.1 forces at most one of them to be true. Similarly, C(i, Z,v) and D(i, T, v) are
set iff there is an atom P(v) in ¢, Z, in the assumption or conclusion respectively; otherwise
we force their ~-counterparts to hold. Again, condition 5.1 ensures exactly one of them
holds. Lastly, since we force all elements of A(0) to hold, A(0) is unset everywhere. Thus,
the initialization part uniquely gives us the witnesses for the quantifiers.

Since SEARCH macros work for any conditions, for any values of our variables the

clauses composing a SEARCH macro are satisfied. Now we can show that

Vi-Horn -Vt < aVu < a(A(t, v) <> 2A(t,v)).

First, A(t,v) and A(t,v) can never be positive at the same time, because of the condi-
tion 5.1. Now, suppose there are values of ¢ and v, such that both =A(t,v) and —A(t,v)
hold. Fixing v, we construct a string, containing the values of ¢ for which both variables
are false (by YP-Horn-COMP), and take the smallest element ¢, of it (by LNP). Now,
to > 0 since the initialization forces A(0) to hold, so there is an element ¢{ = ¢, + 1.
Since t, is the least such element, either A(t),v) or A(t),v) hold. In the first case, the
clause (A(t,v) — A(t +1,v)) forces A(tp,v) to hold. In the second case, similarly, either
there is a clause with an empty assumption and P(v) in the conclusion, in which case
the formula 5.2 sets A(tp,v); or there is no such clause, then the SEARCH in formula 5.4
sets Spery , 50 A(tg, v) is set. Therefore, at least one of the A(t,v) and A(t,v) is set on
each step, so at least one of them is positive; to satisfy the formula 5.1, their values have
to be opposite.

The last condition, ¢, sets either R or R, but not both. By the same reasoning as in
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the case of the initialization of V', ¢ holds.
Thus, we can always satisfy IRIRRUNg(R, R), and for all second-order variables in

it, including R and R, their ~ counterparts have the opposite value. O

Lemma 5.4. Let ® = 3P®'(P) (that is, ® denotes the XF part of ®). Then, A(a)

provably is the minimal satisfying truth assignment for ®:

Vi-Horn = ®'(P) A RUNg(R, R) — (Vv < a(A(a,v) — P(v))).

Proof. Suppose not. Consider all values v, such that A(a,v), but =P(v). As given by
Y P-Horn-COMP, we can construct a string X, which will hold these values: X (v) «
(=P(v) A A(a,v)). Again by ©F-Horn-COMP, we can construct a string ¥ which will

record steps of the algorithm during which these atoms were set:
Y (t) < (SEARCH(a, A(t), A(t + 1), X) A Sx(a)).

Here, X is a free variable and so can be negated; its negation will play a role of its
~ counterpart in SEARCH, so this formula will be SO3-Horn. Since we assumed that
there are values of A(a) that are not set in P , there is an element in X, and so since
this element had to be set on some step of the algorithm by the conditions on A, for
some t A(t, v) A A(t + 1,v) is satisfied. Therefore, Y is nonempty, and so by the Least
Number Principle there is a smallest element ¢y in Y. Now, consider a string Z, which
exists by LP-Horn-COMP, such that Z(v) <> A(te,v) A A(ty + 1,v) AY (v). Such string
contains the atoms in A(a) and not in P that were set first (since if an atom was in A(t)
for some ¢, it propagates to A(a)). Now, we take the smallest index vy in Z, given by the
LNP. Using SEARCH, we can find at least one clause in which P(vy) is in the conclusion,
and the assumption evaluates to true. Now, since it is the first step on which an index
unset in P occurs in A(ty + 1), Vv < aA(ty,v) — P(v). Therefore, the assumption of
this clause evaluates to true for P, too. But then, since P(v) is in the conclusion, and
it is unset, P cannot satisfy this clause. That gives a contradiction, since P is supposed

to satisfy all clauses. Thus, if P satisfies the formula ¢, Vv < aA(a,v) — P(v). O
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Theorem 5.5. Let ® be a Horn formula, and let R be the result variable from the formula

RUNg constructed from ® by the procedure above. Then,
Vi-Horn - RUNg(R, R) — (® < R)

Proof. 1. Suppose R is set. By construction, no clause was unsatisfied because of first-
order atoms, otherwise one of Sy would be set, so R would be set and (=R V —R)
would not be satisfied. We can show that P = A(a) satisfies ¢. Suppose not. Then
for some values Z of the first-order variables some clause i is not satisfied by A(a).
Then, in row (i, ) of C for all set variables v, A(a,v) holds, and D(i, T) is empty.
But then S, does not hold, and so R cannot be set. Therefore, if R is set, then

A(a) satisfies ¢, and ® holds.

2. Now suppose that R is not set (instead, R is set). Then, either one of Sy holds, or
S4 holds. In the first case, the formula is unsatisfiable because of first-order atoms,
and so no algorithm can find a satisfying assignment. Now suppose S4 holds. That
means that there was a clause (i, z) with the empty (false) conclusion and all atoms
in the assumption set. Suppose that there is some satisfying assignment P for ¢.
Since by the lemma 5.4 A(a) C P, P also sets all the atoms in the assumption of
clause 4, z. The only situation when the clause can remain unsatisfied, since there
are a steps, is when its conclusion is empty. But then P does not satisfy that clause
either. So, when the first-order variables evaluate to z, clause 7 of ¢ is not satisfied.
Therefore, if A(a) is not a satisfying assignment (and, thus, R is set), then ¢ is

unsatisfiable and ® is false.

5.6 Complements of SO3d-Horn Formulae

As an example of an application of the construction above, we can define explicitly a

complement of a Horn formula. In order to construct ®, such that ® <» =®, we encode



CHAPTER 5. ENCODING A RUN OF SO3-HORN-SAT ALGORITHM 47

a run of the SO3-Horn-SAT algorithm on ® by RUNg, and add the condition that R

holds, or directly force R and R to be “false” and “true”, respectively.
—-® <> ARIRRUNg (R, R) A R <> RuNg(false, true) (5.6)

As shown above, R + ®. Since by the definition at least one of R and R is always
set, and (-RV —J?), R +» —R. Therefore, the formula RUNg A R defines a complement

of .

5.7 Allowing Leading First-Order Quantifiers

We can also use this construction to allow first-order quantifiers in front of a SO3-Horn
formula. That is, a formula consisting of a SO-Horn formula preceded by first-order
quantifiers is equivalent to a SO-Horn formula. A formula preceded by universal first-
order quantifiers is equivalent to a SO-Horn formula by corollaries 3.2 and 4.3. The idea
of the construction for the case of existential first-order quantifiers is similar to converting
Y8 formulae to SO3-Horn formulae, but during the innermost step, where we need to
check the value and its negation of the quantifier-free part of the formula, we look at the
corresponding R and R.
So, a SO3-Horn equivalent of Jy < b®(y) will be

FY3YVy < b(=Y (y) V =Y (y) A (Y(0)) A (Y(D)) A RUNa (y)A

(R(y,0) = Y(y+1)Y(y) = Y(y+1) A (B(y,0) AY(y) = V(y+ 1))

This construction explicitly searches for a witness for dy < b. A simpler way to
represent an existential quantifier is to represent the formula as —Vy < b—=®(y), then
construct a complement of ®(y) with EIREI[%RUN@(R, R, y). By corollary 3.2, Yy <
bARIRRUNG(R, R, y) is equivalent to a SO-Horn formula. So, we can construct a com-
plement of it, using the same method; clearly, the resulting formula will be provably

equivalent to Jy < bP(y).



Chapter 6

Future Work and Conclusions

In this thesis we described an alternative system for feasibly constructive proofs. It would
be interesting to formalize some of the known results about systems of the same power,
such as QPV, in V}-Horn, i.e., the relation with Extended Frege proofs. Also, it is known
that S3 is finitely axiomatizable, but no such result is known for the systems with the
power of QPV; since Vi-Horn does not have infinitely many function symbols, it can be
a more suitable model to study this question.

In the rest of this chapter, we give a brief outline of some additional results about
Vi-Horn. In particular, we give an intuition for the proof that P-def is equivalent to

Vi-Horn.

6.1 Defining Functions in Vi-Horn

Since SO-Horn formulae correspond to polytime functions, we can define functions by
stating their defining relations as SO-Horn formulae. ©2-Horn-COMP gives the existence
of the bit graphs of string functions. Number functions can be treated as string functions
with minimization applied to the result.

Using the encoding of the SO3-Horn-SAT algorithm, we can prove that the functions

definable in V;-Horn are closed under composition, substitution of the result of a function

48
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for a variable, and limited recursion. Both for the string and number functions we use
the string corresponding to the array of values of the result variable R to check the value
of that function (for a particular bit i in the case of string functions).

To show the closure under composition, in the case of number functions we just
existentially quantify the value of the first function using the result of section 5.7. In
the case of string functions, we construct the new bit graph by similarly checking the
bits of the value of the first function. Substitution of a function for a variable is treated
similarly. In the case of limited recursion, we use a two-dimensional array to encode the
sequence of the result values of the function at each step of the recursion.

Since, as we showed earlier, we can define all ACy functions in SO3-Horn, we obtain a
class of functions that includes ACy function and is closed under composition and limited

recursion; thus, the class of functions we define contains all polytime functions.

6.2 Vi-Horn Is at Least as Powerful as P-def

Using these definitions of functions, we can add function symbols for all polytime func-
tions to V;-Horn and obtain a conservative extension. Since we proved XZ-COMP, and
the rest of axioms should be easy theorems of Vi-Horn, that will imply that V;-Horn

proves all theorems of P-def.

6.3 Vi-Horn Is at Most as Powerful as P-def

In order to show that P-def is at least as powerful as Vi-Horn, we need to show that
P-def can prove every instance of XZ-Horn-COMP. Since SO3-Horn-SAT is solvable in
polytime, for each SO3-Horn formula we can find a polytime function that computes
the value of this formula. We can then use it to compute the values of this formula
on a sequence of indices. The existence of a string containing exactly these values is

guaranteed by ZZ-COMP. The resulting string will correspond to the string of values of
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the original SO3-Horn formulae, given in V;-Horn by ¥E-Horn-COMP. So, we can prove
in P-def every instance of XZ-Horn-COMP, and, therefore, all theorems of V;-Horn.

Therefore, Vi-Horn has the same power as P-def.
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