
Annals of Pure and Applied Logic 124 (2003) 193–231

www.elsevier.com/locate/apal

A second-order system for polytime reasoning
based on Gr%adel’s theorem�

Stephen Cook∗ , Antonina Kolokolova
Department of Computer Science, University of Toronto, Toronto, Ont., Canada M5S 3G4

Received 20 December 2001; received in revised form 27 May 2003; accepted 3 June 2003

Communicated by A.J. Wilkie

Abstract

We introduce a second-order system V1-Horn of bounded arithmetic formalizing polynomial-
time reasoning, based on Gr%adel’s (Theoret. Comput. Sci. 101 (1992) 35) second-order Horn
characterization of P. Our system has comprehension over P predicates (de9ned by Gr%adel’s
second-order Horn formulas), and only 9nitely many function symbols. Other systems of
polynomial-time reasoning either allow induction on NP predicates (such as Buss’s S1

2 or the
second-order V 1

1), and hence are more powerful than our system (assuming the polynomial
hierarchy does not collapse), or use Cobham’s theorem to introduce function symbols for all
polynomial-time functions (such as Cook’s PV and Zambella’s P-def). We prove that our system
is equivalent to QPV and Zambella’s P-def. Using our techniques, we also show that V1-Horn
is 9nitely axiomatizable, and, as a corollary, that the class of ∀�b

1 consequences of S1
2 is 9nitely

axiomatizable as well, thus answering an open question.
c© 2003 Elsevier B.V. All rights reserved.

MSC: 03F35; 68Q15; 68Q19

Keywords: Bounded arithmetic; Polynomial time; Second-order system; Descriptive complexity

1. Introduction

1.1. Bounded arithmetic

The 9rst theory that was explicitly designed in order for all proofs to be feasibly
constructible (i.e., constructible in polynomial time) was the equational theory PV,

� A previous version of this paper is available as ECCC report number TR01-024.
∗ Corresponding author.
E-mail addresses: sacook@cs.toronto.edu (S. Cook), kol@cs.toronto.edu (A. Kolokolova).

0168-0072/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0168-0072(03)00056-3

mailto:sacook@cs.toronto.edu
mailto:kol@cs.toronto.edu

194 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

proposed by Cook in 1975 [5]. There, Cobham’s characterization of polynomial-time
was used to construct polynomial-time functions. One motivation for PV was its close
relation with Extended Frege proof systems for the propositional calculus: theorems of
PV give rise to families of tautologies with polynomial-length proofs.

A major work establishing the relation between complexity theory and bounded
arithmetic was the 1985 Ph.D. thesis of Buss [2], where the 9rst-order theories Si

2
and various second-order theories were developed that characterize the levels of the
polynomial-time hierarchy, PSPACE and EXPTIME. The most important of them is the
9rst-order theory S1

2 , consisting of a set of 32 axioms and an induction-on-notation
scheme over �b

1 (NP) formulas. Buss proves that a function is �b
1 -de9nable in S1

2 iK it
is polynomial-time. He also shows that S1

2 is ∀�b
1 conservative over QPV (a quanti9ed

version of Cook’s PV); however general conservativity of S1
2 over QPV would imply

the collapse of the polynomial hierarchy to P=poly [4,16,24]. Razborov and, at the
same time, Takeuti [19,22] introduce a general method (the RSUV isomorphism) for
showing the equivalence between certain 9rst-order and second-order theories, which
can be used to show that the second-order theory V 1

1 is equivalent in power to S1
2 [19].

Finally, in 1996 Zambella [24] introduced an elegant way of presenting a hierarchy
of second-order theories equivalent to 〈Si

2〉, as well as the second-order theory P-def ,
which includes function symbols for all polynomial-time functions and is equivalent to
QPV.

1.2. Descriptive complexity

While in bounded arithmetic we are interested in the proving power of theories, in
descriptive complexity we are interested in the expressive power of formulas. Instead
of asking what class of theorems can be proven, we ask what properties (for example,
graph properties) we can express using certain classes of formulas. This research goes
back to Fagin’s 1974 result [9] showing that a language is in NP iK it corresponds
to the set of 9nite models of an existential second-order formula. Later Stockmeyer
[21] extended this result, characterizing the polynomial hierarchy as the class of sets
of 9nite models of all second-order formulas.

Finding an elegant descriptive-style characterization of P proved more illusive. One
such characterization of P uses the 9rst-order logic augmented with the successor rela-
tion and the least 9xed-point operator [13,23]. Later Leivant [17,18] found a second-
order characterization of P using the notion of “controlled computational formula”,
which is related to Horn formula. (The motivation for using Horn formulas comes
from the existence of a simple polynomial-time algorithm for solving the satis9abil-
ity problem for propositional Horn formulas.) Finally Gr%adel [10,11] found an elegant
descriptive characterization of P using SO∃-Horn (second-order existential Horn) for-
mulas with successor.

1.3. Our results

We present a second-order theory V1-Horn of bounded arithmetic based on Gr%adel’s
theorem; our theory is intended to capture polynomial-time reasoning. We use the

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 195

elegant syntax of Zambella’s [24] second-order theories. Our main new feature is a
comprehension axiom scheme for second-order existential Horn formulas, which by
Gr%adel’s theorem represent the polynomial-time predicates. Our main results are that
V1-Horn is 9nitely axiomatizable, from which it follows that the ∀�b

1 consequences
of S1

2 are 9nitely axiomatizable, thus answering an open question (see [15, Theo-
rem 10.1.2]). We also show that V 0 (Zambella’s �b

0-comp) is 9nitely axiomatizable.
A major tool needed for our results is the construction in our theory of a �B

1 -Horn
formula RUN�(R; R̃) which encodes a run of the satis9ability algorithm on the �B

1 -Horn
formula � (see Section 5).

Section 2 contains background information. We de9ne our system V1-Horn and other
second-order theories in Section 3. In Section 4 we show that V1-Horn proves the
equivalence of each formula in several broad syntactic classes to a �B

1 -Horn formula.
Section 5 contains the description of the main tool needed for later sections, namely
representing the Horn satis9ability algorithm in V1-Horn by a �B

1 -Horn formula. In
Section 6 we construct a conservative extension V1-Horn(FP) of V1-Horn by introducing
function symbols for polynomial-time functions, and show the equivalence of this and
Zambella’s P-def [24]. Finally, in Section 7 we demonstrate that both V 0 and V1-Horn
are 9nitely axiomatizable, and show that this implies that the ∀�b

1 consequences of S1
2

are 9nitely axiomatizable.

2. Second-order formulas and complexity classes

The prototype for the underlying language of V1-Horn is the language of second-
order bounded arithmetic introduced by Buss [2]. However, our language is closer to
the nicer second-order language introduced by Zambella [24], in that we eliminate the
superscript terms t tagging second-order variables X t and instead introduce a bounding
function |X |.

Our language L2
A has two sorts, called 9rst-order and second-order. (The intention

is that 9rst-order objects are natural numbers and second-order objects are 9nite sets
of natural numbers, or 9nite binary strings.) First-order variables are denoted by lower
case letters a; b; i; j; : : : ; x; y; z, and second-order variables are denoted by upper-case
letters P;Q; : : : ; X; Y; Z .

The 9rst-order function and predicate symbols of L2
A are the standard symbols

{0; 1;+; · ;6;=} of Peano Arithmetic. To these we add the unary upper-bound func-
tion symbol | |, which takes second-order objects to 9rst-order objects, and the binary
membership predicate symbol ∈.

For every second-order variable X we form a 9rst-order term |X | called an upper-
bound term. The 9rst-order terms of L2

A are built from 0, 1, 9rst-order variables, and
upper-bound terms using the function symbols + and ·. The only second-order terms
are second-order variables.

The atomic formulas of L2
A have one of the forms s= t; s6t; t ∈X , where s and t

are 9rst-order terms and X is a second-order variable. We usually write X (t) instead
of t ∈X . Formulas are built from atomic formulas using the propositional connectives
∧;∨;¬, the 9rst-order quanti9ers ∀x;∃x and the second-order quanti9ers ∀X;∃X .

196 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

We use the usual abbreviations s
= t for ¬s= t and s¡t for s6t ∧ s
= t. Bounded
9rst-order quanti9ers get their usual meaning: ∀x6t� stands for ∀x(x6t→�) and
∃x6t� stands for ∃x(x6t ∧�). We also use bounded second-order quanti9ers: ∀X6t�
stands for ∀X (|X |6t→�) and ∃X6t� stands for ∃X (|X |6t ∧�).

In the standard model for L2
A 9rst-order variables range over N, and second-order

variables range over 9nite subsets of N. If X is the empty set, then |X | is interpreted
as 0, otherwise |X | is interpreted as one more than the largest element of the 9nite set
X . The symbols 0; 1;+· ;∈ get there usual interpretations.

In complexity theory a member of a language is often taken to be a binary string,
but from our “second-order” point of view we take it to be a 9nite subset X of N.
To relate this to the string point of view we code a 9nite set X by the binary string
X ′, where X ′ is the empty string if X is the empty set, and otherwise X ′ is the binary
string x0x1; : : : ; xn−1 of length n= |X | such that xi = 1⇔ i∈X; 06i6n − 1. (Thus
all nonempty string codes end in 1.) If L is a set of 9nite subsets of N, then the
corresponding set of strings is L′ = {X ′ |X ∈L}. If C is a standard complexity class
such as AC0, P or NP, then our second-order reinterpretation of C is {L |L′ ∈C}.
Since the complexity classes considered here are robust, this reinterpretation will come
out the same for any reasonable string coding method.

The role of 9rst-order objects in our theories is that of members of second-order
objects, or equivalently as position indices for binary strings. Thus in determining
the complexity of a set of natural numbers we code a natural number i using unary
notation; that is as a string i′ of 1’s of length i.

De�nition 2.1. If �(Sz; SY) is a formula of L2
A whose free variables are among z1; : : : ; zk ;

Y1; : : : ; Y‘ then � represents a k + ‘-ary relation R� as follows. If a1; : : : ; ak are natural
numbers and B1; : : : ; B‘ are 9nite sets of natural numbers, then 〈a1; : : : ; ak ; B1; : : : ; B‘〉
satis9es R� iK �(a1; : : : ; ak ; B1; : : : ; B‘) is true in the standard model.

If C is a complexity class, then we make sense of the statement “R� is in C” using
the string encodings described above. In particular, a relation R(x1; : : : ; xk ; Y1; : : : ; Ym) is
in P iK it is recognizable in time bounded by a polynomial in (x1; : : : ; xk ; |Y1|; : : : ; |Ym|).

We now de9ne the classes �B
i and B

i of bounded second-order formulas. (A for-
mula is bounded if all its quanti9ers are bounded.) �B

0 and B
0 both denote the class

of bounded formulas with no second-order quanti9ers. We de9ne inductively �B
i+1

as the least class of formulas containing B
i and closed under disjunction, conjunc-

tion, and bounded existential second-order quanti9cation. The class B
i+1 is de9ned

dually.
The classes �B

i and B
i are the formulas in our (Zambella’s) simpli9ed language

L2
A which correspond to the classes �1; b

i and 1; b
i in Buss’s prototype second-order

language [2,15], except that Buss’s language contains the # function, and our language
does not. Our �B

i and B
i are the second-order analogs of the 9rst-order formula classes

�b
i and b

i , where sharply-bounded quanti9ers correspond to our bounded 9rst-order
quanti9ers. The formulas �B

1 represent precisely the NP relations, and more generally
for i¿1 the �B

i formulas represent the �p
i relations in the polynomial hierarchy and B

i
represent the p

i relations [2,15]. The formulas �B
0 represent precisely the uniform AC0

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 197

relations, which are the same as the class FO (9rst order) of descriptive complexity
[1] (see [14, Chapter 1].)

We now de9ne the formulas corresponding to polynomial time. The reasons for some
of the syntactic restrictions such as prohibiting terms of the form |Pi| are explained by
the example at the end of this section.

De�nition 2.2. A formula � of L2
A is Horn with respect to the second-order variables

P1; : : : ; Pk if � is quanti9er-free in conjunctive normal form and in every clause there
is at most one positive literal of the form Pi(t) (called the head of the clause) and
no terms of the form |Pi|. (We do allow upper-bound terms |X | and any number of
positive literals X (t), where X is not among {P1; : : : ; Pk}.) A formula is �B

1 -Horn if it
has the form

∃P1 : : :∃Pk∀x16t1 : : :∀xm6tm�; (1)

where k; m¿0 and � is Horn with respect to P1; : : : ; Pk , and the bounding terms ti do
not involve x1; : : : ; xm. More generally a formula is �B-Horn if it has the above form
except that each second-order quanti9er can be either ∃ or ∀. A formula is b

1-Horn
with respect to P1; : : : ; Pk if it has the form (1) with the existential quanti9ers omitted.

Remark 2.3. Note that our de9nition of �B
1 -Horn is somewhat diKerent from the orig-

inal Gr%adel’s de9nition of second-order existential Horn formulas. Since our setting is
that of bounded arithmetic rather than 9nite model theory, we bound all quanti9ers
(explicit bounds on 9rst-order quanti9ers give implicit bounds on second-order ones).
We include both + and × as interpreted functions (thus allowing pairing functions),
while Gr%adel includes only successor. Gr%adel allows k-ary predicate symbols for each
k, while we allow only unary predicate symbols (but we can simulate k-ary symbols
using pairing functions).

Notice that the second-order quanti9ers in �B
1 -Horn and �B-Horn formulas are not

bounded. However, since no occurrence of |Pi| is allowed, each such formula is equiv-
alent in the standard model to one in which every quanti9er ∃Pi or ∀Pi is bounded by
a term t which is an upper bound on all terms u such that Pi(u) occurs in the formula.
On the other hand, if occurrences of |Pi| were allowed, then an unbounded quanti9er
∃Pi can code an unbounded number quanti9er ∃|Pi| and hence undecidable relations
would be representable.

It is often convenient to treat second-order objects as multi-dimensional arrays, in-
stead of one-dimensional strings or sets. An easy way to do so is to use a pairing
function 〈· ; ·〉, de9ned by

〈x; y〉 = (x + y)(x + y + 1) + 2y: (2)

This function is a one–one map from N×N into N, and it is represented by a term
in our language. It is easily generalized to k-tuples by de9ning 〈x1; : : : ; xk〉 by the
recursion

〈x〉 = x; 〈x1; : : : ; xk+1〉 = 〈〈x1; : : : ; xk〉; xk+1〉: (3)

198 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

Thus, any 9nite set P can be treated as a set of k-tuples of variables; P(x1; : : : ; xk) is
de9ned to be P(〈x1; : : : ; xk〉).

The theorem below is similar to part of Gr%adel’s Theorem 5.2 [10] (see also [20,
Chapter 7]), which is stated in the context of descriptive complexity theory. There
are technical diKerences: Gr%adel’s language is more general in that it allows predicate
symbols of arbitrary arity, but these can be simulated by the pairing function as just
explained. On the other hand, our language is more general in that it allows interpreted
function symbols + and · and terms |Yi|, as well as number variables whose range goes
up to any polynomial in the size of the inputs. However, none of these generalizations
takes us outside the polynomial-time relations.

Theorem 2.4. A relation R(z1; : : : ; zk ; Y1; : : : ; Ym) is in P i6 it is representable by a
�B

1 -Horn formula $. Further $ can be chosen with only one existentially quanti9ed
second-order variable, and only two universally quanti9ed 9rst-order variables.

Example (Parity(X)). This is a �B
1 -Horn formula which is true for strings X that con-

tain an odd number of 1’s. It encodes a dynamic-programming algorithm for computing
parity of X : Podd(i) is true (and Peven(i) is false) iK the pre9x of X of length i contains
an odd number of 1’s.

∃Peven∃Podd∀i ¡ |X |
Peven(0) ∧ ¬Podd(0) ∧ Podd(|X |)
∧ (¬Peven(i + 1) ∨ ¬Podd(i + 1))

∧ (Peven(i) ∧ X (i)→Podd(i + 1)) ∧ (Podd(i) ∧ X (i)→Peven(i + 1))

∧ (Peven(i) ∧ ¬X (i)→Peven(i + 1)) ∧ (Podd(i) ∧ ¬X (i)→Podd(i + 1)):

Proof (Proof of theorem). For the ‘if ’ direction, let $(Sz; SY) be a �B
1 -Horn formula

which represents R(Sz; SY). Then $ has the form

∃P1 : : :∃Pr∀x16t1 : : :∀xs6ts�(Sx; SP; Sz; SY); (4)

where � is Horn with respect to P1; : : : ; Pr . We outline a polynomial-time algorithm
which, given numbers a1; : : : ; ak (coded in unary) and 9nite sets B1; : : : ; Bm (coded by
binary strings) determines whether $(Sa; SB) is true in the standard model. First note
since Sa and SB are given, each 9rst-order term u in �(Sx; SP; Sa; SB) becomes a polynomial
u(x1; : : : ; xk), and the coeVcients can be computed in polynomial-time. Each Pi can oc-
cur only in the context Pi(u(Sx)) for some such term u, and the terms t1; : : : ; ts bounding
the xi’s evaluate to constants.

The algorithm proceeds by computing for each possible Sx-value Sb= (b1; : : : ; bs);
06bi6ti, a simpli9ed form �[Sb] of the instance �(Sb; SP; Sa; SB) of �. In this form all 9rst-
order terms and all atomic formulas not involving the Pi’s are evaluated, and the result
is a Horn formula �[Sb] all of whose atoms are in the list Pi(0); : : : ; Pi(T); i = 1; : : : ; r,
where T is the largest possible argument of any Pi in any instance. By taking the
conjunction over all Sb of these instances, we obtain a propositional Horn formula

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 199

PROP[�; Sa; SB]. It is not hard to see that $(Sa; SB) is true in the standard model iK
PROP[�; Sa; SB] is satis9able.

Finally, there is a standard polynomial-time algorithm to test satis9ability of a given
propositional Horn formula �. Namely, initialize a truth assignment ' to set all atoms
to false. Now repeatedly, for each clause C in � not satis9ed by the current ', either
C has no positive occurrence of an atom P, in which case � is unsatis9able, or C has
a unique positive occurrence of some atom P, in which case Wip the value of ' on P
from false to true.

The proof of the ‘only-if ’ direction resembles the proof of Cook’s theorem that
SAT is NP-complete, and of Fagin’s theorem of 9nite model theory that second-
order existential formulas capture NP. Let M be a deterministic Turing machine that
recognizes a relation R(x1; : : : ; xk ; Y1; : : : ; Ym) within time n‘, where n = x1 + · · ·+ xk +
|Y1|+ · · ·+ |Ym| is the length of the input. The entire computation of M on this input
can be represented by a two-dimensional array P(i; j) with t(n) rows and columns, for
some polynomial t, where the ith row speci9es the tape con9guration at time i. (P
can be represented by a one-dimensional array using a pairing function, as explained
above.) Thus R(Sx; SY) is represented by the �B

1 -Horn formula

∃P∃P̃∀i 6 t(n)∀j 6 t(n)�(P; P̃; i; j; Sx; SY): (5)

Here the variable P̃ is forced to be ¬P in the same way that Peven and Podd are forced to
be complementary in the parity example above. The formula �(P; P̃; i; j; Sx; SY) is Horn
with respect to P and P̃, and each clause speci9es a local condition on the computation.
These conditions are (1) the 9rst row of P codes the initial tape con9guration for the
inputs Sx; SY , (2) for i¡t(n) the i+1st row represents the ith row after one step, and (3)
the 9nal state is accepting. To make (2) easier to specify, it is convenient to represent
the state at time i at the beginning of row i by a string of 9xed length, and after the
code for the symbol stored at each tape position there is a bit specifying whether that
square is currently scanned by the Turing machine head. In this way rows i and i + 1
will be identical except for the state codes at the beginning and the bits coding the
old and new tape squares scanned.

To see that each clause can be designed to meet the Horn condition of at most one
positive occurrence among the atoms of the form P(u); P̃(u), we include the clause
(¬P(i; j)∨¬P̃(i; j)). Then every bit in row 0 is speci9ed using a clause with a positive
literal of one of the forms P(0; u) or P̃(0; u), possibly together with other literals
involving input variables. For example, if 15 bits are reserved at the beginning of each
row to specify the state, and 3 bits code each tape square, then one of the clauses
might be (56j ∧ j65 + x1→P(0; 3 · j + 1)). In general, every bit in row i + 1 is
speci9ed conditional on a 9xed number of bits in row i. A clause is included for each
possible state of these conditional bits, and the conditions are speci9ed using ¬P and
¬P̃ as appropriate. In this way at least one of P(i; j); P̃(i; j) must be true for each (i; j)
(and hence exactly one). Note however that if M were nondeterministic, then row i+1
would have more than one possible value, and some clauses would require more than
one positive literal so the formula would not be Horn.

To meet the “further” condition stated in the theorem, the two arrays P and P̃ can
be combined into one array Q(i; j; k), where k = 0 for P and k = 1 for P̃.

200 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

Note that above proof also shows that every NP-relation can be represented by a
�B

1 formula of the form (5), except that � is not Horn.

Example (3Color(n; E)). This is a �B
1 formula asserting that the graph with edge re-

lation E on nodes {0; 1; : : : ; n − 1} is three-colorable. We write E(x; y) like a binary
relation, although it can be coded as a unary relation using the pairing function as
explained above. The three colors are P;Q, and R.

∃P∃Q∃R∀x ¡ n∀y ¡ n(P(x) ∨ Q(x) ∨ R(x)) ∧ (¬E(x; y) ∨ ¬P(x) ∨ ¬P(y))

∧ (¬E(x; y) ∨ ¬Q(x) ∨ ¬Q(y)) ∧ (¬E(x; y) ∨ ¬R(x) ∨ ¬R(y)):

This formula is �B
1 -Horn except for the 9rst clause. Since graph 3-colorability is

NP-complete, it cannot be represented by a �B
1 -Horn formula unless P=NP. This

example illustrates why we cannot allow bounded 9rst-order existential quanti9ers af-
ter the universal quanti9ers in �B

1 -Horn formulas, since the 9rst clause could be re-
placed by ∃i¡3P(i; x) where now P(0; x); P(1; x); P(2; x) represent the three colors.
It also illustrates why we cannot allow terms of the form |Pi|, even if the second-
order quanti9ers are bounded, because ∃i¡3P(i; x) could be replaced by ∃Pi(|Pi|¡3
∧P(|Pi|; x)).

3. V1-Horn and other second-order theories

Our second-order theories use the language L2
A described in the previous section.

They all share the set 2-BASIC of axioms in Table 1, which are similar to the axioms
for Zambella’s theory + [24] and form the second-order analog of Buss’s 9rst-order
axioms BASIC [2]. The set 2-BASIC consists essentially of the axioms for Robinson’s
system Q, together with axioms for 6, and two axioms de9ning the upper-bound
terms |X |.

Table 1
The 2-BASIC axioms

Robinson’s B1: x + 1 �= 0 B2: x + 1 = y + 1→ x = y
Theory Q B3: x + 0 = x B4: x + (y + 1) = (x + y) + 1
axioms B5: x · 0 = 0 B6: x · (y + 1) = (x · y) + x

Axioms B7: 06x B8: x6x + y
for 6 B9: x6y∧ y6z→ x6z B10: (x6y∧ y6x)→ x = y

B11: x6y∨ y6x B12: x6y↔ x¡y + 1

Predecessor B13: x �= 0→∃y(y + 1 = x)

Upper bound L1: X (y)→ y¡|X | L2: y + 1 = |X |→X (y)

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 201

In addition to 2-BASIC, each system needs a comprehension scheme for some set
FORM of formulas.

FORM− COMP :∃X 6 y∀z ¡ y(X (z)↔ �(z)): (6)

Here, � is any formula in the set FORM with no free occurrence of X .
We denote by V i the theory axiomatized by 2-BASIC and �B

i -COMP. For i¿0
V i is essentially the same as Zambella’s �p

i -comp [24].
For i¿1 V i is essentially the same as V i

1 [15]. (The latter restricts comprehension to
�1; b

0 formulas, but allows induction on �1; b
i formulas. However Theorem 1 of Buss [3]

shows that V i
1 proves the �1; b

i comprehension axioms.) Thus for i¿1 V i is a second-
order version of Si

2. In particular, the �B
1 -de9nable functions in V 1 are precisely the

polynomial-time functions [6]. The �B
1 -de9nable functions in V 0 are the uniform AC0

functions [6] (called rudimentary functions in Zambella [24]). The 9rst-order analog
of V 0 is S0

2 with a comprehension scheme for sharply-bounded formulas.

De�nition 3.1. V1-Horn is the theory axiomatized by 2-BASIC and �B
1 -Horn-COMP.

Although 2-BASIC does not include an explicit induction axiom, L2 asserts that a
nonempty set has a largest element. This can be turned into a least number principle,
from which induction follows.

Lemma 3.2. The least number principle is a theorem of V1-Horn, and of V i; i¿0.

LNP : 0 ¡ |X | → ∃x ¡ |X |(X (x) ∧ ∀y ¡ x¬X (y)):

Proof. By the comprehension schema there is a set Y such that |Y |6|X | and for all
z¡|X |

Y (z)↔ ∀i ¡ |X |(X (i)→ z ¡ i):

Thus the set Y consists of those elements smaller than every element in X . We claim
that |Y | satis9es the LNP for X ; that is (i) |Y |¡|X |, (ii) X (|Y |) and
(iii) ∀y¡|Y |¬X (y). First suppose that Y is empty. Then |Y | = 0 by B13 and L2.
By assumption 0¡|X |, so (i) holds in this case. Also X (0), since otherwise Y (0) by
B7 and the de9nition of Y , so (ii) holds. Since ¬y¡0 by B7 and B10 we conclude
(iii) holds vacuously.

Now suppose Y (y) for some y. Then y¡|Y | by L1, so |Y |
= 0 so by B13 |Y |= z+1
for some z and hence Y (z) by L2. Then ¬Y (z+1) by L1. Thus X (z+1) by B11, B12
and the de9nition of Y , so (ii) holds. Also ¬X (z), so (i) holds. Finally (iii) holds by
the de9nition of Y and B10.

Lemma 3.3. Induction on the length of a string is a theorem of V1-Horn, and of
V i; i¿0.

IND : (X (0) ∧ ∀y ¡ z(X (y)→ X (y + 1)))→ X (z):

202 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

Proof. We show ¬IND→¬LNP. By ¬IND we have X (0)∧∀y¡z(X (y)→
X (y + 1)), and ¬X (z). By the comprehension schema there is a set Y such that
∀y¡z + 1(Y (y)↔¬X (y)). Then Y (z), so 0¡|Y |. By LNP Y has a least element y0.
Then y0
= 0 because X (0), so y0 = x0 + 1 for some x0, by B13. But then we must
have X (x0) and ¬X (x0 + 1), which contradicts our assumption.

It is easy to generalize Lemma 3.3 to allow induction with an arbitrary k as a basis,
not just k = 0.

If follows from the above lemma that each of the theories that we have presented
proves an induction axiom for each formula in its comprehension scheme. In particular,
for V1-Horn we have

Corollary 3.4. V1-Horn proves the �B
1 -Horn Induction axioms.

�b
1-Horn-IND : (�(0) ∧ ∀y ¡ z(�(y)→ �(y + 1)))→ �(z);

where � is any �B
1 -Horn formula.

Standard arguments show that induction on open formulas using axioms B1 to B13
is enough to prove simple algebraic properties of + and · such as commutativity,
associativity, distributive laws, and cancellation laws involving +, ·, and 6. Hence
all of our theories prove these properties, and in the sequel we take them for granted.
These simple properties suVce to prove that the tupling function de9ned in (2) and
(3) is one–one, so these theories all prove

〈x1; : : : ; xk〉 = 〈x′1; : : : ; x′k〉 → (x1 = x′1 ∧ · · · ∧ xk = x′k): (7)

Lemma 3.5 (k-ary Comprehension). If �(x1; : : : ; xk) is a �B
1 -Horn formula with no

free occurrence of Y , then V1-Horn proves the k-ary comprehension formula

∃Y6〈b1; : : : ; bk〉∀x1 ¡ b1 : : :∀xk ¡ bk(Y (x1; : : : ; xk)↔ �(x1; : : : ; xk)): (8)

Proof. Let $(i) be the formula

∀x1 ¡ b1 : : :∀xk¡bk(i = 〈x1; : : : ; xk〉 → �(x1; : : : ; xk)):

Then the prenex form of $(i) is �B
1 -Horn, so by the comprehension scheme V1-Horn

proves the existence of a set Y such that |Y |6t(b1; : : : ; bk) and ∀i¡t(b1; : : : ; bk)
(Y (i)↔$(i)). Thus V1-Horn proves

∀x ¡ b1 : : :∀xk ¡ bk(Y (x1; : : : ; xk)↔ �(x1; : : : ; xk));

using the fact (7) that the tupling function is one–one.

4. Formulas provably equivalent to �B
1 -Horn

Our goal now is to show that every �B
0 formula and every �B

i -Horn formula, i∈N,
is provably equivalent in V1-Horn to a �B

1 -Horn formula, and hence can be used in

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 203

the comprehension and induction schemes. Later, we also show that the class of for-
mulas provably equivalent to �B

1 -Horn is closed under ¬;∧;∨ and bounded 9rst-order
quanti9cation (see Section 5.3). We start with a simple observation.

Lemma 4.1. If �1 and �2 are �B
1 -Horn formulas, then �1 ∧�2 is logically equivalent

to a �B
1 -Horn formula.

Proof. Take a suitable prenex form of �1 ∧�2.

4.1. Simulating 9rst-order bounded existential quanti9cation

A major inconvenience of �B
1 -Horn formulas is lack of 9rst-order existential quan-

ti9ers. In general, we cannot allow such quanti9ers without increasing the apparent
expressive power of the formulas, as pointed out in the 3-colorability example. How-
ever, it is possible to introduce bounded existential quanti9ers in some contexts.

Notation 4.2. If P is a second-order variable, then P̃ denotes a second-order variable
whose intended interpretation is ¬P.

We now introduce the Horn formulas SEARCHk , which are b
1 -Horn with respect to all

of their second-order variables and which will allow a �B
1 -Horn formula to represent

∃z¡bX (Sy; z). SEARCHk(Sb; b; S; S̃; X; X̃) asserts that S(Sy; i) holds iK X (Sy; z) holds for
some z¡i, where Sb stands for b1; : : : ; bk , and Sy stands for y1; : : : ; yk . We use Sy¡ Sb for
y1¡b1 ∧ · · · ∧ yk¡bk .

De�nition 4.3. For each k¿1 SEARCHk(Sb; b; S; S̃; X; X̃) is the b
1 -Horn formula

∀ Sy¡ Sb∀i ¡ b(¬S(Sy; 0) ∧ S̃(Sy; 0)) ∧ (¬S(Sy; i + 1) ∨ ¬S̃(Sy; i + 1))

∧ (S(Sy; i)→ S(Sy; i + 1)) ∧ (X (Sy; i)→ S(Sy; i + 1))

∧ (S̃(Sy; i) ∧ X̃ (Sy; i)→ S̃(Sy; i + 1)):

Lemma 4.4. V1-Horn proves the following:

(i) ∀z¡b(X (Sy; z)↔¬X̃ (Sy; z))∧ Sy¡ Sb→∃S∃S̃ SEARCHk(Sb; b; S; S̃; X; X̃)
(ii) ∀z¡b(X (Sy; z)↔¬X̃ (Sy; z))∧SEARCHk(Sb; b; S; S̃; X; X̃)∧ Sy¡ Sb

→ (S(Sy; b)↔∃z¡bX (Sy; z))∧ (S̃(Sy; b)↔∀z¡bX̃ (Sy; z)).

Proof. First we prove part (i). Arguing in V1-Horn, there are two cases. If ∀z¡bX̃ (Sy; b)
then use k +1-ary comprehension (Lemma 3.5) to de9ne S(Sy; z) false and S̃(Sy; z) true,
for all z¡b. The clauses in the de9nition of SEARCHk are clearly satis9ed in this case.
Otherwise, by the LNP there is a least number z0¡b such that X (Sy; x0). Use k + 1-
ary comprehension to de9ne S(Sy; z) false for z6z0 and true for z0¡z¡b, and de9ne
S̃(Sy; z)↔¬S(Sb; z). Again SEARCHk(Sb; b; S; S̃; X; X̃) holds.

204 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

To prove (ii) we use the same two cases as for (i). If ∀z¡bX̃ (Sy; b) we use the
de9nition of SEARCHk to show by induction on z that S(Sy; z) is false and S̃(Sy; z) is true
for z6b, so (ii) holds in this case. For the second case we know from above what S
and S̃ must be, and we again prove our claim by induction on z. Again (ii) follows.

4.2. The �B
0 formulas are provably equivalent to �B

1 -Horn

Consider a �B
0 formula Q1y1¡b1 : : : Qkyk¡bk�(Sy), where each Qi is either ∀ or ∃.

The proof of the following lemma shows how to conjoin copies of SEARCH(: : :) to
de9ne arrays S0; : : : ; Sk such that

Si(y1; : : : ; yk−i)↔ Qk−i+1yk−i+1 ¡ bk−i+1�(Sy):

These are used to form an equivalent �B
1 -Horn formula.

Lemma 4.5. Let (Sy) be a �B
0 formula which may have other free variables be-

sides Sy but does not involve any of the variables S; S̃; SW . Then there is a formula
 ∗(Sb; S; S̃; SW) not involving Sy but which may have other variables of not indicated
and which is b

1 -Horn with respect to S; S̃; SW such that V1-Horn proves the following:

(i) ∃S∃S̃∃ SW ∗(Sb; S; S̃; SW),
(ii) ∗(Sb; S; S̃; SW)→∀ Sy¡ Sb[(S(Sy)↔ (Sy))∧ (S̃(Sy)↔¬ (Sy))].

Proof. We may assume that is in prenex form, and proceed by induction on the
number of quanti9ers. For the base case is quanti9er-free, and we take ∗(Sb; S; S̃)
to be equivalent to

∀ Sy ¡ Sb[(S(Sy)↔ (Sy)) ∧ (S̃(Sy)↔ ¬ (Sy))]:

The formula in brackets can be written in conjunctive normal form, in which case
 ∗(Sb; S; S̃) is b

1 -Horn with respect to S and S̃ and obviously satis9es (ii). Also (i) is
easily proved by de9ning S and S̃ using �B

1 -Horn comprehension.
For the induction step, assume that (Sy) is ∃z¡t�(Sy; z), where t is a term not in-

volving z. By the induction hypothesis applied to � there is a formula �∗(Sb; b; S1; S̃1; SW)
not involving Sy; z which is b

1 -Horn with respect to S1; S̃1; SW which satis9es (i) and
(ii) (with �; �∗; S1 for ; ∗; S). In fact, the induction hypothesis (ii) states

�∗(Sb; b; S1; S̃1; SW)→ ∀ Sy ¡ Sb∀z ¡ b(S1(Sy; z)↔ �(Sy; z)) ∧ (S̃1(Sy; z)↔ ¬�(Sy; z)):

We de9ne ∗(Sb; S; S̃; S1; S̃1; SW) to be the prenex form of

�∗(Sb; t; S1; S̃1; SW) ∧ SEARCHk(Sb; t; S; S̃; S1; S̃1): (9)

Note that this is b
1 -Horn with respect to the displayed second-order variables. By the

induction hypothesis (i) there exists S1; S̃1; SW satisfying �∗. By the induction hypothesis
(ii) we have S1↔¬S̃1. Hence by (i) of Lemma 4.4 we know S; S̃ exist satisfying (i)
in the present lemma for ∗ as de9ned above.

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 205

To prove (ii), assume Sy¡ Sb and ∗(Sb; S; S̃; S1; S̃1; SW). By the induction hypothesis
(ii) for �∗ and (ii) of Lemma 4.4 we have S(Sy; t)↔∃z¡t�(Sy; z) and S̃(Sy; t)↔∀z¡
b¬�(Sy; z), as required.

For the induction step in case (Sy) is ∀z¡t�(Sy; z) we simply modify the arguments
of SEARCHk in (9) by interchanging S with S̃ and S1 with S̃1.

Corollary 4.6. Every �B
0 formula is provably equivalent in V1-Horn to a �B

1 -Horn
formula.

Proof. Let be a �B
0 formula not involving y and let ∗(b; S; S̃; SW) result from

applying the above Lemma to (y). Then (y)↔ (0) so V1-Horn proves

 (y)↔ ∃S∃S̃∃ SW (∗(1; S; S̃; SW) ∧ S(0)):

The right-hand side is easily equivalent to a �B
1 -Horn formula.

Thus V1-Horn proves the induction and comprehension schemes for �B
0 formulas,

and hence it is an extension of V 0.

4.3. Collapse of V -Horn to V1-Horn

Gr%adel [10] showed that it is possible to represent a SO∃-Horn formula preceded
by alternating SO quanti9ers by a SO∃-Horn formula, which implies the collapse of
SO-Horn hierarchy to SO∃-Horn. Here we formalize Gr%adel’s proof in V1-Horn.

First we show that V1-Horn proves a version of the replacement scheme.

Notation. We use P[b] to denote the “bth row” when P is being used as a two-
dimensional array. If �(P) is a formula with no occurrence of |P|, then �(P[b]) is
obtained from �(P) by replacing every atomic formula P(t) by P(b; t) (i.e. P(〈b; t〉):
see (2)).

Lemma 4.7 (Replacement). If �(y; SP) is a b
1 -Horn formula with respect to SP and t

is a term not involving y, then V1-Horn proves

∀y ¡ t∃ SP�(y; SP) ↔ ∃ SP∀y ¡ t�(y; SP
[y]

);

where SP
[y]
is P[y]

1 ; : : : ; P[y]
k . Further the RHS is a �B

1 -Horn formula.

Proof. The last statement is immediate from the de9nition of �B
1 -Horn formula. To

prove the 9rst statement we move the quanti9er ∀y¡t past each ∃Pi in turn, using the
following lemma.

Lemma 4.8. If V1-Horn proves that ∃P∀y¡b�(y; P) is equivalent to some �B
1 -Horn

then V1-Horn proves

∀y ¡ b∃P�(y; P) ↔ ∃P∀y ¡ b�(y; P[y]):

206 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

Proof. To prove the right-to-left implication, assume that P satis9es the existential
quanti9er on the right and suppose y¡b. Use the V1-Horn comprehension axiom to
de9ne P′ such that

∀i ¡ b(P′(i)↔ P(y; i)):

Then P′ satis9es the existential quanti9er on the left.
To prove the left-to-right direction de9ne

$(z) ≡ ∃P∀y ¡ z�(y; P[y]):

Then by assumption $(z) is equivalent to a SO∃-Horn formula, so we may use the
IND scheme (Corollary 3.4) to conclude $(b). It suVces to prove that the LHS
∀y¡b∃P�(y; P) implies the basis and induction steps. The basis is trivial, since when
b= 0 $(0) is vacuously true.

For the induction step, by the induction hypothesis $(z) we may assume z¡b and
P satis9es ∀y¡z�(y; P[y]). Setting y = z in the LHS we have Q such that �(z; Q).
Now we use binary comprehension (Lemma 3.5) to de9ne P′(y; i) by

P′(y; i) ↔
{

P(y; i) if y ¡ z;
Q(i) if y = z:

Then we conclude in V1-Horn the formula ∀y¡z + 1�(y; P′[y]), and hence $(z + 1).

We are now ready to prove the main result of this subsection.

Theorem 4.9. Every SO-Horn formula is provably equivalent in V1-Horn to a SO∃-
Horn formula.

This follows from the Replacement lemma and the following lemma.

Lemma 4.10. If �(P; SQ) is b
1 -Horn with respect to P; SQ then V1-Horn proves

∀P∃ SQ�(P; SQ) ↔ ∀y 6 u∃ SQ�′(y; SQ);

where if P(t1); : : : ; P(tk) is a list of all occurrences of P in �, then u is the term
t1 + · · · + tk + 1, and �′(y; SQ) is obtained from �(P; SQ) by replacing each P(ti) by
ti
=y.

Proof. First note that V1-Horn proves ti¡u, for i = 1; : : : ; k. To prove the left-to-right
direction, for each y simply use comprehension to de9ne P by the condition

∀i 6 u(P(i)↔ i
= y):

The proof of the converse is more complicated. Given P we use �B
0 comprehension to

de9ne the sets SQ in terms of P and the SQ from the RHS. There are two cases. The
easy case is that ∀z¡uP(z) holds. Then take y = u, and the SQ which satisfy the RHS
will also satisfy the LHS, since ti
=y for each i.

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 207

Now suppose ∃z¡u¬P(z). By the Replacement lemma applied to the RHS there are
SQ′ satisfying ∀y6u�′(y; SQ′[y]). For each Qj ∈ SQ use �B

0 comprehension to de9ne Qj

by the condition

∀z ¡ uj(Qj(z)↔ ∀y ¡ u(P(y) ∨ Q′
j
[y](z)));

where uj is an upper bound on all terms v such that Qj(v) occurs in �.
It remains to argue in V1-Horn that this de9nition of SQ satis9es �(P; SQ). We argue

the contrapositive: If ¬�(P; SQ) then ¬�′(y; SQ′[y]) for some y. Recall that � begins with
a string of bounded universal quanti9ers ∀ Sx6 Sw, followed by a quanti9er-free formula
 which is Horn with respect to P; SQ. Fix values for the variables Sx which cause
some clause C(Sx; P; SQ) in to be false. We will show that the corresponding clause
C′(Sx; y; SQ′[y]) in �′ is false for a suitable choice of y. If the head of C is P(ti), then
take y = ti. If the head of C is Qj(v), then choose y6u satisfying (¬P(y)∧¬Q′

j
[y](v)).

Such a y must exist because ¬Qj(v). Otherwise choose any y6u. In each case it is
easy to see that C′(Sx; y; SQ′[y]) is false.

5. Encoding the Horn SAT algorithm by a �B
1 -Horn formula

Here we show that a run of the Horn satis9ability algorithm described in the proof
of Theorem 2.4 can be represented by a �B

1 -Horn formula RUN. This result is needed
for Sections 6 and 7. A simple corollary is that the negation of a �B

1 -Horn formula is
provably equivalent to a �B

1 -Horn formula. In other words, V1-Horn proves that P is
closed under complementation.

Theorem 5.1. Let � be a �B
1 -Horn formula which does not involve R or R̃. Then

there is a formula RUN�(R; R̃) whose free variables include those of � in which
the only atomic subformulas involving R and R̃ are R(0) and R̃(0) and such that
∃R∃R̃RUN�(R; R̃) is a �B

1 -Horn formula and V1-Horn proves the following:

(i) ∃R∃R̃ RUN�(R; R̃),
(ii) RUN�(R; R̃)→ [(R(0)↔�)∧ (R̃(0)↔¬�)].

Corollary 5.2. If � is �B
1 -Horn, then ¬� is provably equivalent in V1-Horn to a

�B
1 -Horn formula NEG�.

Proof. We may take NEG� to be RUN�(⊥;�); that is RUN�(R; R̃) with each occurrence
of the formula R(0) replaced by ⊥ (FALSE) and each occurrence of the formula R̃(0)
replaced by � (TRUE).

Corollary 5.3. The class of formulas provably equivalent in V1-Horn to a �B
1 -Horn

formula is closed under ¬; ∧; ∨, and bounded 9rst-order quanti9cation.

Proof. The preceding corollary handles the case of ¬, Lemma 4.1 handles the case of
∧, and the Replacement Lemma 4.7 handles the case of ∀y¡t. The other cases follow
by DeMorgan’s laws.

208 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

Theorem 5.1 can be generalized to the case in which arrays R(Sy) and R̃(Sy) code
values of �(Sy) and ¬�(Sy).

Corollary 5.4. Let �(Sy) be a �B
1 -Horn formula which does not involve R or R̃. Then

there is a formula RUN�(Sy)(Sb; R; R̃) which does not have Sy free but whose free variables
include any other free variables of � such that

∃R∃R̃RUN�(Sy)(R; R̃)

is a �B
1 -Horn formula and V1-Horn proves the following:

(i) ∃R∃R̃ RUN�(Sy)(Sb; R; R̃),
(ii) RUN�(Sy)(Sb; R; R̃)→∀ Sy¡ Sb[(R(Sy)↔�(Sy))∧ (R̃(Sy)↔¬�(Sy))].

Proof. We take RUN�(Sy) such that V1-Horn proves

RUN�(Sy)(Sb; R; R̃) ↔
∀ Sy ¡ Sb∃R′∃R̃′

[RUN�(R′; R̃
′
) ∧ (R(Sy)↔ R′(0)) ∧ (R̃(Sy)↔ R̃

′
(0))]:

We may take RUN�(Sy) to be �B
1 -Horn by placing the subformula enclosed in [: : :] above

by a suitable prenex form and applying Corollary 5.3. To prove (i) we use �B
1 -Horn

comprehension to de9ne R(Sy) satisfying R(Sy)↔�(Sy) and use �B
1 -Horn comprehension

together with Corollary 5.2 to de9ne R(Sy)↔¬�(Sy) and then apply (i) and (ii) of
Theorem 5.1 to R′ and R̃

′
. To prove (ii) we use (ii) in Theorem 5.1.

We now turn to the proof of Theorem 5.1. The proof is long, but the applications
in Section 6 (the equivalence of V1-Horn with other theories) and Section 7 (the 9nite
axiomatizability of V1-Horn) are interesting.

We begin by observing that one existential quanti9er is enough in a �B
1 -Horn for-

mula. (Recall the notation P[b] for the “bth row” of P in Section 4.3.)

Lemma 5.5. Every �B
1 -Horn formula is provably equivalent in V1-Horn to a �B

1 -Horn
formula with a single existential quanti9er. Speci9cally, if � is b

1 -Horn with respect
to P1; : : : ; Pk then V1-Horn proves

∃P1 : : :∃Pm�(P1; : : : ; Pm) ↔ ∃P�(P[1]; : : : ; P[m]):

Proof. For the left-to-right direction, use binary comprehension (Lemma 3.5) to de9ne
P satisfying

P(i; x) ↔ (i = 1 ∧ P1(x)) ∨ · · · ∨ (i = m ∧ Pm(x)):

For the other direction, for i = 1; : : : ; m use �B
1 -Horn comprehension to de9ne Pi such

that Pi(x)↔P(i; x).

Thus it suVces to prove Theorem 5.1 for �B
1 -Horn formulas of the form

� ≡ ∃P∀x1 6 t1 : : :∀xk 6 tk�(Sx; P); (10)

where � is Horn with respect to P.

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 209

The algorithm we wish to represent has two main steps (see the proof of The-
orem 2.4): First create a propositional Horn formula PROP� (which depends on the
values for the free variables in �), and second apply the Horn Sat algorithm to de-
termine whether PROP� is satis9able. We represent PROP� using the arrays C;D; V ,
and we will present a �B

1 -Horn formula PROP�(C; C̃; D; D̃; V; Ṽ) which de9nes these
arrays and their negations. Besides the indicated free variables, PROP� also has as free
variables the free variables of �. For the second step we present a �B

1 -Horn formula
HORNSAT(a; b; C; C̃; D; D̃; V; Ṽ ; R; R̃) (with all free variables indicated) which is inde-
pendent of � and which sets the result variable R(0) true iK PROP� is satis9able.

The arrays C;D; V together with the scalars a; b completely specify the formula
PROP� as follows. The atoms of PROP� are P(0); : : : ; P(a − 1), and the clauses are
cl0; : : : ; clb−1. We allow both the empty clause and the special clause TRUE. The arrays
C;D; V are de9ned as follows: For 06x¡b; 06v¡a

• C(x; v) asserts that clause clx contains the negative literal ¬P(v).
• D(x; v) asserts that clause clx contains the positive literal P(v).
• V (x) asserts that clause clx is the clause TRUE.

Since PROP� is a Horn formula, for each x; D(x; v) can be true for at most one v.
The array bounds a; b are represented by terms â; b̂ in the free variables of � and

are determined as follows. For each term s in �(Sx; P) in (10) let ŝ be the result of
replacing each variable x1; : : : ; xk by its respective upper bound t1; : : : ; tk . Then the upper
bound â on the arguments of P() is

â ≡ ŝ1 + · · ·+ ŝ‘;

where s1; : : : ; s‘ is a list of all terms such that P(si) or ¬P(si) occurs in �.
The upper bound b̂ on the number of clauses in PROP� is

b̂ ≡ 〈t1; : : : ; ts; m〉;
where t1; : : : ; ts are as in (10), m in the number of clauses in �(Sx; P), and 〈: : :〉 is the
tupling function (2).

Using the abbreviation

SQ ≡ C; C̃; D; D̃; V; Ṽ ;

we can now choose RUN�(R; R̃) to be a �B
1 -Horn formula such that

RUN�(R; R̃) ↔ ∃ SQ[PROP�(SQ) ∧ HORNSAT(â; b̂; SQ; R; R̃)]: (11)

In fact we take RUN�(R; R̃) to be a suitable prenex form of the right-hand side.

5.1. De9nition of PROP�(C; C̃; D; D̃; V; Ṽ)

Below we de9ne three �B
0 formulas C(x; v); D(x; v); V (x) which characterize the

three arrays C;D; V .

210 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

Lemma 5.6. PROP�(SQ) can be de9ned in such a way that ∃ SQPROP�(SQ) is �B
1 -Horn

and V1-Horn proves

(i) ∃ SQPROP�(SQ),
(ii) PROP�(SQ)→∀v¡â∀x¡b̂

[(C(x; v)↔ C(x; v))∧ (D(x; v)↔ D(x; v))∧ (V (x)↔ V (x))
∧ (C̃(x; v)↔¬ C(x; v))∧ (D̃(x; v)↔¬ D(x; v))∧ (Ṽ (x)↔¬ V (x))].

Proof. We apply Lemma 4.5 once each for C; D; V with S in the lemma taken
to be C;D; V , respectively, to obtain three �B

1 -Horn formulas ∗
C ;

∗
D;

∗
V , and then let

PROP�(SQ) be a prenex form of their conjunction.

To de9ne C; D; V let the Horn formula �(Sx; P) in (10) be the conjunction of the
clauses CL0; : : : ;CLm−1. For j = 0; : : : ; m − 1 let �j(Sx) be the quanti9er-free formula
which results by deleting all literals involving P from CLj. Then we de9ne

 V (x) ≡ ∀x1 6 t1; : : : ;∀xk 6 tk
[(x = 〈x1; : : : ; xk ; 0〉 → �0(Sx)) ∧ · · · ∧ (x = 〈x1; : : : ; xk ; m− 1〉 → �m−1(Sx))]:

Now let S be the set of indices j such that the clause CLj has a positive literal of
the form P(u), and let for j∈S let that literal be P(uj(Sx)). Then we de9ne

 D(x; v) ≡ ¬ V (x) ∧ ∃x1 6 t1; : : : ;∃xk 6 tk
∨
j∈S

[x = 〈x1; : : : ; xk ; j〉 ∧ v = uj(Sx)]:

For j = 0; : : : ; m−1 let ¬P(u0
j); : : : ;¬P(unj−1

j) be the literals involving ¬P in CLj. Then

 C(x; v)≡¬ V (x) ∧ ∃x1 6 t1; : : : ;∃xk 6 tk
m−1∨
j=0

nj−1∨
i=0

[x = 〈x1; : : : ; xk ; j〉 ∧ v = ui
j(Sx)]:

5.2. De9nition of HORNSAT(a; b; C; C̃; D; D̃; V; Ṽ ; R; R̃)

Although the Horn satis9ability algorithm is easy to describe informally, it is not
straightforward to formalize in V1-Horn. The propositional Horn satis9ability problem
is complete for P [12], and hence cannot be represented by a �B

0 formula. We need a
more general form of Lemma 4.5 which allows us to use a �B

1 -Horn formula to de9ne
an array representing a given �B

0 formula, now in the presence of complementary
variables U; Ũ which we want to existentially quantify.

Lemma 5.7. Let (Sy;U) be a �B
0 formula which may have free variables not indi-

cated, but does not involve any of the variables S; S̃; SW; Ũ and has no occurrence of
|U |. Then there is a formula ∗(Sb; S; S̃; SW;U; Ũ) not involving Sy but which may have

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 211

other variables of not indicated and which is b
1 -Horn with respect to S; S̃; SW;U; Ũ

such that V1-Horn proves the following:

(i) ∃S∃S̃∃ SW ∗(Sb; S; S̃; SW;U; Ũ),
(ii) ∗(Sb; S; S̃; SW;U; Ũ)∧∀z¡s(U (z)↔¬Ũ (z))

→∀ Sy¡ Sb[(S(Sy)↔ (Sy;U))∧ (S̃(Sy)↔¬ (Sy;U))],

where the term s is a provable upper bound on all terms r such that U (r) occurs in
 . A similar statement applies more generally to formulas (Sy;U1; : : : ; U‘) where the
arrays Ui may have various dimensions.

Proof. We proceed by induction on the number of quanti9ers in , as in the proof of
Lemma 4.5. The induction step is the same as before, but the base case now becomes
more interesting. In this case is quanti9er-free, and we observe that the formula
(S(Sy)↔ (Sy;U)) can be put into a conjunctive normal form which is Horn with
respect to S; U; Ũ by taking the original CNF and replacing each positive literal of the
form U (r) by ¬Ũ (r). A similar remark applies to the formula (S̃(Sy)↔¬ (Sy;U)).

The algorithm represented by HORNSAT(a; b; C; SQ; R; R̃) attempts to 9nd a satisfying
assignment to the Horn formula PROP� described by the parameters a; b; C; D; V . This
is done by 9lling in an array T (t; v), where T (t; v) is the truth value assigned to the
atom P(v) after step t, 06t; v¡a. Initially T (0; v) is false, and at step t + 1 T (t + 1; v)
sets each P(v) true such that P(v) occurs positively in some clause not satis9ed after
step t. Once P(v) is set true, it is never changed to false.

The following �B
0 formulas describe the array T and its negation T̃ . First, INIT

initializes T .

INIT ≡ ∀v ¡ a(T̃ (0; v) ∧ ¬T (0; v)):

In general we need to de9ne a �B
0 formula STEP(v; T [t]) which expresses the value of

T (t + 1; v) in terms of the values T [t] of T at time t. We de9ne STEP using the one-
dimensional array T1 for T [t]. First we need to de9ne CLAUSESAT(x; T1) which asserts
that assignment T1 satis9es clause clx in PROP�.

CLAUSESAT(x; T1) ≡ V (x) ∨ ∃v ¡ a[(C(x; v) ∧ ¬T1(v)) ∨ (D(x; v) ∧ T1(v))]:

Now STEP(v; T1) holds iK either P(v) is true under T1 or there is a clause not satis9ed
by T1 which has a positive literal P(v).

STEP(v; T1) ≡ T1(v) ∨ ∃x ¡ b(¬CLAUSESAT(x; T1) ∧ D(x; v)): (12)

Now we apply Lemma 5.7 taking to be STEP and SU to be C;D; V; T1 to obtain the
formula STEP∗(a; S; S̃; SW; SQ; T1; T̃1) which is b

1 -Horn with respect to all of its displayed
second-order variables and for which V1-Horn proves the following versions of (i) and
(ii) in the lemma.

(i)′ ∃S∃S̃∃ SWSTEP∗(a; S; S̃; SW; SQ; T1; T̃1),

212 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

(ii)′ STEP∗(a; S; S̃; SW; SQ; T1; ST1)∧NEG∧∀v¡a(T1(v)↔¬T̃1(v))
→∀v¡a[(S(v)↔STEP(v; T1))∧ (S̃(v)↔¬STEP(v; T1))],

where we de9ne NEG by

NEG(a; b; SQ)≡∀v ¡ a∀x ¡ b[(C(x; v)↔ ¬C̃(x; v))

∧ (D(x; v)↔ ¬D̃(x; v)) ∧ (V (x)↔ ¬Ṽ (x))]: (13)

Next we use the following formula to de9ne the array T , where we have substituted
T [t+1] for S and T [t] for T1 in STEP∗.

TDEF(a; b; SQ; T; T̃) ≡ INIT(T; T̃) ∧ ∀t ¡ a∃ SW

STEP
∗(a; T [t+1]; T̃

[t+1]
; SW; T [t]; T̃

[t]
): (14)

Lemma 5.8. V1-Horn proves

(i) ∃T∃T̃ TDEF(a; b; SQ; T; T̃),
(ii) TDEF(a; b; SQ; T; T̃)∧NEG→∀t¡a∀v¡a

[(T (t + 1; v)↔STEP(v; T [t]))∧ (T̃ (t + 1; v)↔¬STEP(v; T [t]))].

Proof. To prove (i), let TDEF′ be obtained from TDEF by replacing the bounded quan-
ti9er ∀t¡a in the above de9nition of TDEF by ∀t¡y. De9ne

�(y) ≡ ∃T∃T̃ TDEF
′(y; a; b; SQ; T; T̃):

By the Replacement Lemma �(y) is equivalent to a �B
1 -Horn formula, so we may use

the induction scheme for �(y). This will establish (i), which is simply �(a).
For the base case y = 0 we need only satisfy INIT, so we use the comprehension

scheme to de9ne T to be identically false and T̃ to be identically true.
Now assume the induction hypothesis and suppose that T; T̃ satisfy the existential

quanti9ers in �(y). Let S; S̃ satisfy the existential quanti9ers in (i)′ when T1; T̃1 are
replaced by T [y]; T̃ [y]. Use comprehension to de9ne the arrays T ′; T̃

′
by

T ′(t; v) ↔
{

T (t; v) if t 6 y;
S(v) if t ¿ y

and

T̃
′
(t; v) ↔

{
T̃ (t; v) if t 6 y;
S̃(v) if t ¿ y:

It follows from �(y) and (i)′ that T ′; T̃ ′ satisfy the existential quanti9ers in �(y + 1).
To prove (ii) we 9rst claim that V1-Horn proves

TDEF ∧ NEG→ ∀t 6 a∀v ¡ a(T (t; v)↔ ¬T̃ (t; v)): (15)

V1-Horn proves the RHS by induction on t, assuming TDEF∧NEG. For the base case

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 213

t = 0 this follows from INIT(T; T̃). The induction step t→ t+1 follows from (ii)′ above
with T [t+1]; T̃ [t+1] substituted for S; S̃ and T [t]; T̃ [t] substituted for T1; T̃1.

Now (ii) follows from (15) and (ii)′ with this same substitution.

Now we de9ne SAT(T1) to assert that the truth assignment T1 satis9es PROP�.

SAT(T1) ≡ ∀x ¡ b CLAUSESAT(x; T1):

The next lemma asserts that if the formula PROP is satis9ed at step t, then it remains
satis9ed for each subsequent step.

Lemma 5.9. V1-Horn proves

TDEF ∧ NEG→ [t 6 y 6 a ∧ SAT(T [t])→SAT(T [y])]:

Proof. This follows by applying induction on y to the RHS using Lemma 5.8(ii).

Let SAT∗(b; S; S̃; SW; SQ; T1; T̃1) be the result of applying Lemma 5.7 to SAT(y; T1),
where we have introduced the new variable y as a placeholder. Now we de9ne HORNSAT

to assert that there are arrays T; T̃ which satisfy TDEF and such that R(0) is true iK
the truth assignment T at step a satis9es PROP�. Thus

HORNSAT(a; b; SQ; R; R̃)

≡ ∃T∃T̃ [TDEF(a; b; SQ; T; T̃) ∧ ∃ SWSAT
∗(1; R; R̃; SW; SQ; T [a]; T̃

[a]
)]: (16)

It is clear from Lemma 5.7 that we may assume that the only atomic subformulas
involving R or R̃ in HORNSAT are R(0) and R̃(0) (by replacing R(y) by R(0) and R̃(y)
by R̃(0)), as required by the statement of Theorem 5.1.

Lemma 5.10. V1-Horn proves ∃R∃R̃ HORNSAT(a; b; SQ; R; R̃).

Proof. This is immediate from Lemma 5.8 and Lemma 5.7(i) applied to SAT.

5.3. Proof of Theorem 5.1

Part (i) asserts that V1-Horn proves ∃R∃R̃ RUN�(R; R̃), where RUN� is de9ned in
(11). This follows immediately from Lemma 5.6(i) and Lemma 5.10.

The proof of (ii) requires formalizing the correctness proof of the Horn Sat algo-
rithm. Correctness asserts that assuming SQ is a proper code for a Horn formula PROP,
then HORNSAT implies R(0) iK PROP is satis9able. To clarify the formal statement of
correctness we write SAT(T1) as SAT(a; b; SQ; T1) with all of its free variables indicated.

Lemma 5.11 (Correctness of HornSat). V1-Horn proves

HORNSAT(a; b; SQ; R; R̃) ∧ NEG

→ (R(0)↔ ∃T1SAT(a; b; SQ; T1)) ∧ (R̃(0)↔ ¬∃T1SAT(a; b; SQ; T1)):

214 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

Proof. Reasoning in V1-Horn, assume the hypotheses HORNSAT and NEG, and let T; T̃ ; SW
satisfy the existential quanti9ers in the de9nition (16) of HORNSAT. By Lemma 5.7(ii)
applied to SAT(y; a; b; SQ; T1) (where we have added the new variable y as a placeholder)
with R for S and T [a] for T1 we have

(ii)′′ SAT∗(1; a; b; R; R̃; SW; SQ; T [a]; T̃ [a])∧NEG∧∀z¡a(T [a](z)↔¬T̃ [a](z))
→ (R(0)↔SAT(T [a]))∧ (R̃(0)↔¬SAT(T [a])).

By (15), (16) and the hypotheses to the Correctness Lemma we conclude the hypothe-
ses to (ii)′′ and hence we conclude

(R(0)↔ SAT(T [a])) ∧ (R̃(0)↔¬SAT(T [a])): (17)

From this we concludeR(0)→∃T1SAT(T1) thus establishing one direction each in the two
equivalences on the RHS of the Correctness Lemma (since (ii)′′→ (R(0)↔¬R̃(0))).

Showing the other direction amounts to showing that under our hypotheses, ∃T1SAT

(T1)→SAT(T [a]). In other words, we must show that if PROP is satis9able, then it is
satis9ed by the 9nal truth assignment given by the Horn Sat algorithm. Formally it
suVces to show that V1-Horn proves

TDEF ∧ NEG ∧ SAT(T1)→ SAT(T [a]): (18)

First we show that T [a] is contained in every truth assignment satisfying PROP.

Lemma 5.12. V1-Horn proves

TDEF ∧ NEG ∧ SAT(T1)→ ∀t ¡ a∀v ¡ a(T (t; v)→ T1(v)):

Proof. The RHS is proved by induction on t. The base case t = 0 is vacuous because
the condition INIT(T; T̃) in the de9nition (14) of TDEF implies T [0] is identically false.

For the induction step we apply Lemma 5.8(ii) and the de9nition (12) of STEP(v;
T [t]). Thus the only way that T (t + 1; v) can hold but not T (t; v) is if some clause clx
is not satis9ed by T [t] and contains a positive literal P(v). (Recall that cl0; : : : ; clb−1 are
the clauses in PROP�, as explained in the paragraphs following Eq. (10).) But by the
induction hypothesis and our assumption that T1 satis9es clx we have ¬CLAUSESAT(x;
t[t])→T1(v).

If SAT(T1) but ¬SAT(T [a]) then there is a clause clx such that CLAUSESAT(x; T1)
but ¬CLAUSESAT(x; T [a]). Hence by the above lemma clx contains a positive literal
P(v) such that ¬T (a; v). Thus V1-Horn proves

TDEF ∧ NEG ∧ SAT(T1) ∧ ¬SAT(T [a])→ ∃v ¡ a¬T (a; v): (19)

There are only a atoms P(0); : : : ; P(a− 1) to be set, and as long as at least one clause
is not satis9ed every step sets at least one atom. It follows that after a steps T [a] must
be identically true, contradicting (19).

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 215

To formalize the last part of the argument we introduce in the next subsection
a counting formula NUMONES(a; y; X), which asserts that the number of true values
among X (0); : : : ; X (a− 1) is at least y. Using results in that subsection we now claim
that V1-Horn proves

TDEF ∧ NEG ∧ ¬SAT(T [a]) ∧ SAT(T1)→ NUMONES(a; t; T [t]): (20)

This follows by applying induction on t to the RHS, using Lemma 5.14(i) for the basis
t = 0. For the induction step t→ t + 1 we use Lemma 5.15 with T [t] for X; T [t+1] for
Y , and t for y, and Lemma 5.8(ii). The existence of v such that ¬T (t; v)∧T (t + 1; v)
follows from our assumptions ¬SAT(T [a]) (and hence ¬SAT(T [t]) by Lemma 5.9) and
SAT(T1) using Lemmas 5.8(ii) and 5.12.

Finally (18) follows from (20) (with t = a) together with Lemma 5.14(ii) and (19).
This completes the proof of Lemma 5.11.

We can now complete the proof of Theorem 5.1(ii). By the de9nition (11) of RUN�

and Lemma 5.11 if suVces to show that V1-Horn proves the following two formulas.

PROP�(SQ)→ NEG(â; b̂; SQ); (21)

PROP�(SQ)→ [�↔ ∃T1(SAT(â; b̂; SQ; T1))]: (22)

That (21) is provable follows from the de9nition (13) of NEG and Lemma 5.6(ii).
To show (22) is provable we refer to the de9nition (10) of � and show that V1-Horn

proves

PROP�(SQ)→ ∀x1 6 t1 : : :∀xk 6 tk [�(Sx; P)↔ SAT(â; b̂; SQ; P)]: (23)

Recall (see the proof of Lemma 5.6) that �(Sx; P) is the conjunction of the clauses
CL0; : : : ;CLm−1. By Lemma 5.6(ii) and the de9nitions of $C;$D;$V , V1-Horn proves
for j = 0; : : : ; m− 1

PROP�(SQ)→ ∀ Sx 6 St[CLj(Sx; P)↔ CLAUSESAT(〈 Sx; j〉; P)]:

This establishes the right-to-left direction of the equivalence in (23). To establish the
other direction we also need the fact that V1-Horn proves (assuming PROP�(SQ)) that if x
is not of the form 〈x1; : : : ; xk ; j〉 then $V (x) and hence V (x) and hence CLAUSESAT(x; P).

5.4. Counting in V1-Horn

The results in this subsection are needed to complete the proof of Lemma 5.11
(Correctness of HORNSAT).

We de9ne a �B
1 -Horn formula NUMONES(a; y; X) which asserts that the number

of true values among X (0); : : : ; X (a − 1) is at least y. First we de9ne a formula
COUNT(a;M; M̃ ; X) which is b

1 -Horn with respect to M; M̃ and which de9nes comple-
mentary arrays M; M̃ so that for t; y6a, M (t; y) holds iK the number of true values
among X (0); : : : ; X (t − 1) is at least y. We give recurrence equations in the style of

216 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

the de9nition of PARITY(X) given after Theorem 2.4.

COUNT(a;M; M̃ ; X)≡∀t 6 a∀y 6 a

M (t; 0) ∧ ¬M̃ (t; 0) ∧ ¬M (0; y + 1) ∧ M̃ (0; y + 1)

∧ (¬M (t; y + 1) ∨ ¬M̃ (t; y + 1))

∧ (M (t; y) ∧ X (t)→ M (t + 1; y + 1))

∧ (M (t; y + 1)→ M (t + 1; y + 1))

∧ (M̃ (t; y)→ M̃ (t + 1; y + 1))

∧ (M̃ (t; y + 1) ∧ ¬X (t)→ M̃ (t + 1; y + 1)):

Lemma 5.13. V1-Horn proves

(i) ∃M∃M̃COUNT(a;M; M̃ ; X),
(ii) COUNT(a;M; M̃ ; X)→ [t6a→∀y6a(M (t; y)↔¬M̃ (t; y))].

Proof. Since (i) is a �B
1 -Horn formula we may use induction on a. When a= 0 we

use comprehension to explicitly de9ne M such that M (0; 0); M (1; 0); ¬M (0; 1), and
(M (1; 1)↔X (0)), and similarly for M̃ . For the induction step a→ a + 1 we use com-
prehension to de9ne the new values of M; M̃ using the recursion equations and the old
values given by the induction hypothesis, in the style of the proof of Lemma 5.8(i).

The proof of (ii) uses the induction scheme applied to �(t), where �(t) is the RHS.

This result allows us to use ¬M and M̃ interchangeably, and we shall do this freely
in what follows.

Now we give the de9nition

NUMONES(a; y; X) ≡ ∃M∃M̃ [COUNT(a;M; M̃ ; X) ∧M (a; y)]:

Lemma 5.14. V1-Horn proves the following:

(i) NUMONES(a; 0; X),
(ii) NUMONES(a; a; X)→∀v¡aX (v).

Proof. (i) follows immediately from the de9nitions of NUMONES and COUNT.
To prove (ii) we 9rst show that V1-Horn proves

COUNT(a;M; M̃ ; X)→ ∀y ¡ a(t ¡ y → ¬M (t; y)): (24)

This follows by induction on t applied to the RHS, using the de9nition of COUNT.
Next we show that V1-Horn proves

COUNT(a;M; M̃ ; X) ∧ ¬X (v)→ [v ¡ t 6 a→¬M (t; t)]: (25)

This also follows by induction on t applied to the RHS, using (24).

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 217

Now (ii) follows from (25) by setting t = a.

We introduce the abbreviation

X ⊆a Y ≡ ∀y ¡ a(X (y)→ Y (y)):

Lemma 5.15. V1-Horn proves

X ⊆a Y ∧ v ¡ a ∧ ¬X (v) ∧ Y (v) ∧ y ¡ a→
[NUMONES(a; y; X)→ NUMONES(a; y + 1; Y)]:

Proof. First we claim that V1-Horn proves each of the following formulas using in-
duction on t; the second uses the 9rst.

X ⊆a Y ∧ COUNT(a;M; M̃ ; X) ∧ COUNT(a;M ′; M̃
′
; Y)

→ ∀y ¡ a(t 6 a ∧M (t; y)→ M ′(t; y));

X ⊆a Y ∧ ¬X (v) ∧ Y (v) ∧ COUNT(a;M; M̃ ; X) ∧ COUNT(a;M ′; M̃
′
; Y)

→ ∀y ¡ a(v ¡ t 6 a ∧M (t; y)→ M ′(t; y + 1)):

Now the lemma follows from Lemma 5.13 and the formula immediately above with
t = a.

6. Equivalence of V1-Horn, P-def and QPV

The 9rst-order theory QPV (called PV1 in KrajiZcek [15]) has function symbols for
all polynomial-time computable functions, and the axioms include de9ning equations
for these functions (based on Cobham’s Theorem) and induction on the length of
numbers. The theory has been extensively studied [2,5,7,8,15] and shown to robustly
capture the notion of “polynomial-time reasoning”. Zambella’s [24] theory P-def is a
second-order version of QPV, and can shown to be equivalent to QPV by the method
of RSUV isomorphism (see [15]). Here we show that V1-Horn is equivalent in power
to P-def . This implies that V1-Horn is equivalent in power to QPV, but is most likely
not as powerful as S1

2 (see Section 1). We begin by showing how to add function
symbols to V1-Horn.

6.1. Adding function symbols to V1-Horn

In Section 2 we de9ned the class P in our second-order setting to consist of all
relations of the form R(x1; : : : ; xk ; Y1; : : : ; Ym) recognizable in time bounded by a poly-
nomial in (x1; : : : ; xk ; |Y1|; : : : ; |Ym|). In the same spirit we now de9ne the class FP
to consist of all functions F(x1; : : : ; xk ; Y1; : : : ; Ym) computable in time bounded by a

218 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

polynomial in (x1; : : : ; xk ; |Y1|; : : : ; |Ym|). There are two kinds of functions in FP; string
functions, denoted by upper-case letters F , take second-order objects as values, and
number functions, denoted by lower-case letters f, take 9rst-order objects as values.
As before, number values are expressed in unary notation when de9ning computation
time.

We say that a function has arity 〈k; m〉 if it takes k number arguments and m string
arguments.

It is convenient to represent a string function F(Sx; SY) by its bit graph BF(Sx; SY),
de9ned by the condition

BF(i; Sx; SY) ⇔ F(Sx; SY)(i):

That is, BF(i; Sx; SY) holds iK the ith bit of F(Sx; SY) is 1. The following characterization
of FP is straightforward.

Lemma 6.1. (i) A string function F(Sx; SY) is in FP i6 |F(Sx; SY)| is bounded by a poly-
nomial in (Sx; | SY |) and its bit graph BF is in P.

(ii) A number function f(Sx; SY) is in FP i6 f(Sx; SY) = |F(Sx; SY)| for some string
function F in FP.

We now de9ne a conservative extension V1-Horn(FP) of V1-Horn by introducing
function symbols for polynomial time functions with de9ning equations based on the
above lemma.

De�nition 6.2 (Speci9cation of V1-Horn(FP)). The language L2
A (FP) is the language

L2
A of V1-Horn extended by new function symbols. We de9ne function symbols, terms,

formulas, and �B
1 -Horn formulas for V1-Horn(FP) by simultaneous recursion as follows.

In general Sx = x1; : : : ; xk and SY =Y1; : : : ; Ym.

(i) To every 9rst-order term ‘(Sx; SY) and �B
1 -Horn formula �(i; Sx; SY) we associate an

arity 〈k; m〉 string function symbol F with de9ning formulas (renaming ‘ as ‘F and �
as �F)

|F(Sx; SY)|6 ‘F(Sx; SY) (26)

∀i ¡ ‘(Sx; SY)[F(Sx; SY)(i)↔ �F(i; Sx; SY)]: (27)

To every arity 〈k; m〉 string function symbol F we associate an arity 〈k; m〉 number
function symbol f with de9ning formula

f(Sx; SY) = |F(Sx; SY)|: (28)

(ii) First-order variables and 0 and 1 are 9rst-order terms and second-order variables
are second-order terms.

(iii) If t1; t2 are 9rst-order terms then t1 + t2 and t1 · t2 are 9rst-order terms. If T is
a second-order term then |T | is a 9rst-order term.

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 219

(iv) If t1; : : : ; tk are 9rst-order terms and T1; : : : ; Tm are second-order terms, and f
and F are arity 〈k; m〉 number and string function symbols, respectively, then f(St; ST)
is a 9rst-order term and F(St; ST) is a second-order term.

(v) If s; t are 9rst-order terms and T is a second-order term then s= t, s6t and
T (t) are atomic formulas. Formulas are built from atomic formulas as in V1-Horn
using ∧;∨;¬ and the 9rst and second-order quanti9ers.

(vi) �B
1 -Horn formulas are de9ned as in De9nition 2.2, with term and formula

understood in the present context, and with the restriction that no term may include any
quanti9ed second-order variable Pi as a proper subpart. (This generalizes the restriction
that |Pi| may not appear. However formulas Pi(t) may appear for any term t satisfying
this restriction.)

The axioms of V1-Horn(FP) are the same as for V1-Horn except that the compre-
hension scheme is generalized to allow comprehension for all �B

1 -Horn formulas of
V1-Horn(FP), and the de9ning formulas introduced in (i) for all function symbols are
included.

We refer to function symbols F and f introduced by (i) as derived function symbols,
to distinguish them from the original function symbols 0; 1;+; ·; | | of V1-Horn. In
reasoning about V1-Horn(FP) it is useful to de9ne the rank of each function symbol
by assigning rank 0 to the original function symbols and in general assigning 1+ the
maximum of the ranks of function symbols in ‘F and �F to each function symbol F
introduced by (i) above, and 1+ the rank of F for each function symbol f introduced
by (i) above.

We claim that (a) every function symbol introduced by (i) represents a polynomial-
time function, and (b) each �B

1 -Horn formula � of V1-Horn(FP) represents a relation
in P. Claims (a) and (b) are proved simultaneously by induction on the rank of the
function symbol introduced in (a), and the maximum of the ranks of the function
symbols occurring in � for (b). The base case follows from Theorem 2.4, and for the
induction step (a) follows from (b) and Lemma 6.1. To prove (b), we observe that
the proof of the if direction of Theorem 2.4 still goes through. In particular, given
values for the free variables Sz; SY and the quanti9ed variables Sx in (4), every 9rst-order
term can be evaluated to a number and every second-order term can be evaluated to
a string, because the restriction in the de9nition (vi) of �B

1 -Horn insures that no term
involves quanti9ed second-order variables Pi.

It is not hard to check that the results in the previous two sections apply to
V1-Horn(FP) as well as to V1-Horn. This is true in particular to the main theorem
on RUN�.

Theorem 6.3. Theorem 5.1 on RUN�, and its corollaries, apply to V1-Horn(FP). Any
derived function symbol occurring in RUN�, NEG�, etc. also occurs in �.

Proof. The formula RUN�(R; R̃) is constructed from the two formulas PROP� and
HORNSAT. The formula HORNSAT describes the propositional Horn satis9ability algo-
rithm, is independent of �, and is the same in the present context. The formula PROP�

describes the propositional version of �. This does depend on � but it is constructed
in the present context exactly as before.

220 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

The following lemma is needed for the proof of the theorem below.

Lemma 6.4 (Term Bounding). (Here all variables are fully indicated.) For each 9rst-
order term t(Sx; SY) of V1-Horn(FP) there is a 9rst-order bounding term ‘t(Sx; Sy) of
V1-Horn such that

V1-Horn(FP) � t(Sx; SY) 6 ‘t(Sx; | SY |):
For each second-order term T (Sx; SY) there is a 9rst-order bounding term ‘T (Sx; Sy) of
V1-Horn such that

V1-Horn(FP) � |T (Sx; SY)|6 ‘T (Sx; | SY |):

Proof. The two assertions are proved simultaneously by double induction, 9rst on the
highest rank of any function symbol occurring in t or T , and second on the maximum
nesting depth of derived function symbols in t and T .

Theorem 6.5. For every �B
1 -Horn formula �′(Sx; SY) of V1-Horn(FP) there is a �B

1 -Horn
formula � of V1-Horn such that

V1-Horn(FP) � �′(Sx; SY)↔ �(Sx; SY):

Corollary 6.6 (Conservativity). Every theorem of V1-Horn(FP) in the language of
V1-Horn is a theorem of V1-Horn.

Proof. It suVces to show that every model M of V1-Horn has an expansion M ′ to
the language L2

A (FP) which is a model of V1-Horn(FP). To de9ne M ′ it suVces to
specify functions on the universes of M interpreting each function symbol F and f
introduced in De9nition 6.2(i), in such a way that the de9ning formulas are satis9ed.
First note that the value of each 9rst-order function f is uniquely speci9ed by (28)
as a 9rst-order element of M (assuming that F has been speci9ed). Next note that for
each tuple of values for the arguments of F , (26) and (27) uniquely specify the value
of F(Sx; SY) as a set of 9rst-order elements of M . Further by the theorem, the formula
�F specifying the bit graph of F is equivalent to a �B

1 -Horn formula of V1-Horn,
and therefore by �B

1 -Horn comprehension this set of elements is realized in M as a
second-order object. Finally the comprehension axioms for all �B

1 -Horn formulas of
V1-Horn(FP) are satis9ed by M ′, by the theorem.

Proof (Proof of the Theorem). The proof that each such �′ can be converted to an
appropriate � is carried out by triple induction, 9rst on the highest rank r of any
function symbol occurring in �′, second on the maximum nesting depth d of derived
functions in any term in �′ containing a function symbol of rank r, and third on the
number of such maximal terms occurring in �′. The base case, r = 0, is trivial since
we may take �=�′. Now suppose r¿0 and let

�′(Sx; SY) ≡ ∃P1 : : :∃Pa∀z1 ¡ t1 : : :∀zb ¡ tb�′(Sz; SP; Sx; SY); (29)

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 221

where �′ is a quanti9er-free Horn formula satisfying the conditions in De9nition 2.2.
We may suppose that none of the quanti9er bounding terms ti contains a function
symbol not in V1-Horn since by the Term Bounding Lemma 6.4 we can replace ∀xi¡ti
by its ∀xi¡‘ti and add the clause xi¡ti as a conjunct to �′.

We may replace each occurrence f(: : :) of a 9rst-order derived function symbol f by
its de9nition |F(: : :)| increasing the rank or nesting depth of derived function symbols.
Therefore we may assume that no 9rst-order derived function symbol occurs in �′.

Let r be the maximum rank of any function symbol occurring in �′, let d be the
maximum nesting depth of derived function symbols in terms of rank r, and let T
be a second-order term in �′ containing a function symbol of rank r and let T have
derived nesting depth d. Then T has the form F(Ss; SS) where F is a second-order
function symbol, Ss are 9rst-order terms and SS are second-order terms. There are two
cases, depending on how T occurs in �′:
Case I: T occurs in a term |F(Ss; SS)|.
Case II: T occurs in an atomic formula F(Ss; SS)(t).
For Case I, suppose that F(Sy; SZ) is de9ned from ‘F(Sy; SZ) and �F(Sy; SZ) in (i) of

De9nition 6.2. Then according to the axioms of V1-Horn, |F(Sy; SZ)| is 1 + the largest
j¡‘F(Sy; SZ) such that �F(j; Sy; SZ), or 0 if no such j exists. Therefore

V1-Horn(FP) � [i = |F(Sy; SZ)| ↔ $(i; Sy; SZ)]; (30)

where $(i; Sy; SZ) is the formula

i = 0 ∧ ∀j ¡ ‘F(Sy; SZ)¬�F(j; Sy; SZ) ∨
∃i′ ¡ i[i = i′ + 1 ∧ �F(i′; Sy; SZ) ∧ ∀j ¡ ‘F(Sy; SZ)(i 6 j ⊃ ¬�F(j; Sy; SZ))]:

Notice that by de9nition of rank, any function symbol occurring in �F or ‘F has
smaller rank than that of F , and therefore rank less than r. Therefore by Corollary 5.3
and Theorem 6.3, $ is provably equivalent to a �B

1 -Horn formula all of whose derived
function symbols have rank less than r, and hence by the induction hypothesis provably
equivalent to a �B

1 -Horn formula of V1-Horn. Thus we may assume that $(i; Sy; SZ) is
a �B

1 -Horn formula with no derived function symbol.
De9ne $′(i; Sx; Sz; SY)≡$(i; Ss; SS) where we have indicated all possible free variables

of $′. Then by (30)

V1-Horn(FP) � [i = |F(Ss; SS)| ↔ $′(i; Sx; Sz; SY)]: (31)

The derived nesting depth of terms in Ss; SS is less than that of F(Ss; SS), and hence by
the induction hypothesis we may assume that $′(i; Sx; Sz; SY) is a �B

1 -Horn formula with
no derived function symbol.

We now apply Corollary 5.4 to $′(i; Sz) (that is, we do not change $′, only indicate
the variables i; Sz) to obtain a �B

1 -Horn formula RUN$′(i; Sz)(b; Sc; R; R̃; Sx; SY) satisfying the
Corollary. Here b is a bounding variable for i, Sc are bounding variables for Sz, and we
have indicated the free variables Sx; SY which RUN$′(i; Sz) inherits from $′.

Referring to (29), let �′
i be �′ with each occurrence of |F(Ss; SS)| replaced by the

variable i. Then by Corollary 5.4 and (31), noting that RUN$′(i; Sz) does not contain

222 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

any of i; Sz; SP free,

V1-Horn(FP) � [�′(Sx; SY)↔ �′′(Sx; SY)];

where �′′(Sx; SY) is the formula

∃R∃R̃∃ SP∀ Sz ¡ St ∀i ¡ ‘F(Ss; SS)

[RUN$′(i; Sz)(‘F(Ss; SS); St; R; R̃; Sx; SY) ∧ (¬R(i; Sz) ∨ �′
i(Sz; SP; Sx; SY))]:

Note that �′′ can be converted to an equivalent �B
1 -Horn formula by 9rst putting it into

a suitable prenex form and then putting a copy of the literal ¬R(i; Sz) inside every clause
of �′

i to make the disjunction into a Horn formula. The resulting �B
1 -Horn formula has

one fewer occurrence of a term of derived depth d containing a function symbol of
rank r (since T was removed from �′ in forming �′

i and RUN$′(i; Sz) has no derived
function symbol). Hence by the induction hypothesis, �′′ is provably equivalent to a
�B

1 -Horn formula with no derived function symbol.
The proof for Case II is similar, but easier. By reasoning as before, we can 9nd a

�B
1 -Horn formula $′(i; Sx; Sz; SY) with no derived function symbol such that (analogously

to (31))

V1-Horn(FP) � [F(Ss; SS)(i)↔ $′(i; Sx; Sz; SY)]: (32)

Again we apply Corollary 5.4 to $′(i; Sz) to obtain a �B
1 -Horn formula RUN$′(i; Sz)

(b; Sc; R; R̃; Sx; SY) satisfying the corollary. Again referring to (29), let �′
R be �′ with

each positive occurrence of F(Ss; SS)(t) replaced by ¬R̃(t; Sz) and each occurrence of
¬F(Ss; SS)(t) replaced by ¬R(t; Sz). (In this way �′

R is Horn with respect to R; R̃ in
De9nition 2.2.) Then by Corollary 5.4 and (32),

V1-Horn(FP) � [�′(Sx; SY)↔ �′′(Sx; SY)];

where now �′′(Sx; SY) is the formula

∃R∃R̃∃ SP∀ Sz ¡ St[RUN$′(i; Sz)(‘F(Ss; SS); St; R; R̃; Sx; SY) ∧ �′
R(Sz; SP; Sx; SY)]:

Again �′′ can be converted to an equivalent �B
1 -Horn formula by putting it into a

suitable prenex form, and hence by the induction hypothesis �′′ is provably equivalent
to a �B

1 -Horn formula with no derived function symbol.

6.2. Speci9cation of P-def

We present a version of Zambella’s [24] P-def which 9ts our notation and axioms.
It is the same in spirit to Zambella’s system. The system P-def is obtained from
a Base Theory (BT) by introducing function symbols for all functions in FP, based
on Cobham’s recursion-theoretic characterization of the polynomial-time computable
functions.

The BT has the language L2
A (=), which is L2

A with second-order equality. System
BT has the same terms and formulas as V1-Horn, except that atomic formulas include
equations X =Y between second-order variables. The axioms of BT consist of the

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 223

axioms B1; : : : ;B13;L1;L2 of V1-Horn, the axiom E of extensionality (below) and the
comprehension scheme for �B

0 formulas.

E : X = Y ↔ [|X | = |Y | ∧ ∀i ¡ |X |(X (i)↔ Y (i))]: (33)

As mentioned in Section 2, the �B
0 formulas represent precisely the AC0 relations.

Analogously to FP, we de9ne FAC0 to be those polynomially-bounded string and num-
ber functions whose bit graphs are AC0 relations. (The functions in FAC0 are termed
rudimentary in Zambella [24].) After Zambella [24], we de9ne the R-def to be BT
augmented with function symbols for functions in FAC0 and their de9ning formulas.

More precisely, the language of R-def is L2
A (=) augmented with new function sym-

bols, which are de9ned by simultaneous recursion along with terms, formulas and �B
0

formulas, as in De9nition 6.2 with the following changes. In (i), �B
1 -Horn formula is

replaced with �0
B formula. In (v), we now allow S =T as an atomic formula, where

S; T are second-order terms. In (vi) we replace the de9nition of �B
1 -Horn formula by

that of �B
0 formula, which is a bounded formula in the language of R-def with no

second-order quanti9er.
The axioms of R-def are the axioms B1; : : : ;B13;L1;L2, and E, together with com-

prehension over the �B
0 formulas of R-def and the de9ning formulas for all derived

function symbols.
By an easier version of the proofs of Theorem 6.5 and Corollary 6.6 we can show

that R-def is a conservative extension of the Base Theory BT.
We next name a string function symbol CHOP of R-def of arity 〈1; 1〉, where

CHOP(x; Y) is intended to be the initial segment of Y of length at most x. The de9ning
equations of CHOP are

|CHOP(x; Y)|6 x;

∀i ¡ x[CHOP(x; Y)(i)↔ Y (i)]:

We de9ne P-def to be the extension of R-def obtained by introducing new function
symbols and their de9ning formulas as follows:

To every 9rst-order term ‘F(z; Sx; SY) of P-def and function symbols GF;HF of P-def
of arities 〈k − 1; m〉; 〈k; m + 1〉 we associate an arity 〈k; m〉 string function F with
de9ning formulas

F(0; Sx; SY) = CHOP(‘F(0; Sx; SY); G(Sx; SY)); (34)

F(z + 1; Sx; SY) = CHOP(‘F(z; Sx; SY); H (z; Sx; SY ; F(z; Sx; SY))): (35)

In addition, we allow new function symbols to be introduced as in (26)–(28), where
now �F is any �B

0 formula in the language of P-def .
The axioms for P-def are the same as for R-def , except we include the de9ning for-

mulas for the new function symbols, and �B
0 formulas allow the new function symbols.

We remark that (26)–(28) allow the introduction of a function symbol for the
composition of other function symbols. For example, we could take �F(i; Sx; SY) to be
G(H (Sx; SY))(i).

224 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

6.3. Relating V1-Horn and P-def

Theorem 6.7. P-def is a conservative extension of V1-Horn.

The next two lemmas prove the two directions. The proofs of the lemmas and of
Theorem 6.5 actually show how to translate V1-Horn(FP) and P-def back and forth in
such a way that V1-Horn is 9xed.

Lemma 6.8. Every theorem of V1-Horn is a theorem of P-def .

Proof. It suVces to show that every �B
1 -Horn-COMP axiom is a theorem of P-def .

Since P-def allows the �B
0 -COMP axioms, this amounts to showing that P-def proves

that each �B
1 -Horn formula is equivalent to some �B

0 formula in the language of P-def .
This can be done by de9ning function symbols in P-def for witnessing the second-
order quanti9ers in the �B

1 -Horn formula (1) and proving them correct. This amounts
to describing the Horn satis9ability algorithm in P-def , or more precisely formalizing
the proof of Theorem 5.1 (describing RUN�) in P-def . We will not carry out the details
here, since as mentioned in the beginning of this section of the power of QPV (and
hence P-def) has been well established.

Lemma 6.9. Every theorem of P-def in the language of V1-Horn is a theorem of
V1-Horn.

Proof. First note that using the extensionality axiom E (33), every equation S =T
between second-order terms is provably equivalent in P-def to a �B

0 formula (denoted
E(S =T)) not involving second-order =. Therefore, we may assume that formulas in
P-def do not involve such second-order equations.

Now we claim that for every derived function symbol F of P-def there is a function
symbol F ′ of V1-Horn(FP) which represents the same function, such that V1-Horn(FP)
proves the translation of the de9ning formula for F . The translation is carried out by
replacing each function symbol G in the de9ning formula by its V1-Horn(FP) counter-
part G′, and by replacing each second-order equation S =T by E(S =T). From this
property a simple model-theoretic argument shows that for every formula � of P-def ,
if � is a theorem of P-def then its translation �′ is a theorem of V1-Horn(FP). The
lemma follows.

We de9ne the translation of F to F ′ by induction on the rank of F . If F is intro-
duced in P-def by (26) and (27) where �F is a �B

0 formula, then we introduce F ′ in
V1-Horn(FP) by (26) and (27) where ‘F′ is ‘′F (the translation of ‘F into vhorn(FP))
and �F′ is a �B

1 -Horn formula equivalent to �′
F , using Corollary 4.6 and Theorem 6.3.

If f is introduced in P-def by (28) then f′ is introduced in V1-Horn(FP) using (28)
with F ′ for F .

Now suppose that F is introduced in P-def by (34) and (35). The idea is to 9x the
arguments (z; Sx; SY) of F and present a formula de9ning an array P(i; y) (and its negative
counterpart P̃(i; y)) giving the ith bit of F(y; Sx; SY), 06i¡‘′F(y; Sx; SY); 06y6z, where
‘′F is the translation of ‘F as a term of V1-Horn(FP). The formula will recursively

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 225

de9ne all values of P(i; y) and P̃(i; y) successively for y = 0; 1; : : : ; z. To give the step
from y to y+1 we must translate the formula H (z; Sx; SY ; Z)(i) into one which is “Horn
with respect to Z”. In what follows we will suppress the variables Sx; SY .

Applying Theorem 6.5, let $(i; y; Z) be a �B
1 -Horn formula of V1-Horn equivalent to

the formula H ′(y;CHOP(‘′F(y); Z))(i). Next apply Corollary 5.4 to obtain the formula
RUN$(i)(b; R; R̃; y; Z). Now apply Lemma 6.11 below to RUN$(i), using the bound ‘′F(y)
for ‘ to obtain an equivalent �B

1 -Horn formula not involving |Z |. Further modify this
formula by replacing each positive subformula of the form Z(t) by (t¡‘′F(y)∧¬Z̃(t))
(distribute ∨ over ∧ to keep the quanti9er-free part in CNF) and each occurrence of
the form ¬Z(t) by (¬Z(t)∨ ‘′F(y)¡t). The result is a formula RUN$(i)(b; R; R̃; y; Z; Z̃)
which is �B

1 -Horn with respect to Z; Z̃ whose truth is unchanged if Z is replaced by
CHOP(‘′F(y); Z). Further, de9ning the hypothesis HYPO(Z; Z̃) to be the formula

HYPO ≡ ∀j ¡ ‘′F(y)(Z(j)↔ ¬Z̃(j))

it follows by Corollary 5.4 that V1-Horn(FP) proves

HYPO→ ∃R∃R̃ RUN$(i)(b; R; R̃; y; Z; Z̃); (36)

[HYPO ∧ RUN$(i)(b; R; R̃; y; Z; Z̃)]

→ ∀i ¡ b[(R(i)↔ H ′(y;CHOP(‘′F(y); Z))(i)) ∧ (R̃(i)↔ ¬R(i))]: (37)

Referring to (26) and (27), we take the de9ning term ‘F′(z) for F ′(z) in V1-Horn(FP)
to be ‘′F(z), and the bit graph formula �F′(i; z) for F ′(z) to be a suitable prenex form
of

�F′(i; z) ≡ ∃P∃P̃(P(i; z) ∧ �̂(z; P; P̃));

where �̂ is

�̂(z; P; P̃) ≡ ∀j ¡ ‘′F(0)[(P(j; 0)↔ G′()(j)) ∧ (P̃(j; 0)↔ ¬G′()(j))] ∧
∀y ¡ z RUN$(i)(‘′F(y + 1); P(∗; y + 1); P̃(∗; y + 1); y; P(∗; y); P̃(∗; y));

where for example the notation P(∗; y + 1) indicates that each occurrence of the form
R(t) in RUN$(i) is replaced by P(t; y + 1).

It remains to show that the translations of (34) and (35) follow in V1-Horn(FP)
from (26) and (27). First note that CHOP′ = CHOP, since the de9ning formulas for CHOP

in P-def are also in V1-Horn(FP). Next note that by (26) for F ′, the RHS’s of the
translations of (34) and (35) can be replaced by the second argument of CHOP in each
case; that is by G′() and H ′(z; F ′(z)), respectively. Now (34) follows easily from the
de9nition of �̂(0; PP̃).

To establish the translation of (35) we make a series of Claims.

Claim 1. V1-Horn(FP) � �̂(z; P; P̃)→∀y6z HYPO(P(∗; y); P̃(∗; y)).

This follows using induction on z and (37).

226 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

Claim 2 (Uniqueness of P). V1-Horn(FP) proves

[�̂(z; P; P̃) ∧ �̂(z; Q; Q̃)]→ ∀y 6 z∀i ¡ ‘′F(y)(P(i; y)↔ Q(i; y)):

Again this follows using induction on z and (37) and Claim 1.

Claim 3. V1-Horn(FP) � �̂(z; P; P̃)→∀y6z∀i¡‘′F(y)[P(i; y)↔�F′(i; y)].

The left-to-right direction of the equivalence is immediate from the de9nition of �̂.
The right-to-left direction requires Claim 2.

Claim 4. V1-Horn(FP) � ∃P∃P̃�̂(z; P; P̃).

This follows using induction on z, (36), and Claim 1.

Claim 5. V1-Horn(FP)�∀i¡‘′F(z)[�F′(i; z + 1)↔H ′(z; F ′(z))(i)].

The left-to-right direction follows from the de9nition of �F′ , Claim 1, (37), and
Claim 3. The right-to-left direction uses Claim 4 in addition.

Finally the translation of (35) follows immediately from Claim 5.
This completes the proof of Lemma 6.9, except for the lemmas below.

Lemma 6.10. If �(Z) is a �B
1 -Horn formula not involving |Z |, then RUN� does not

involve |Z |.

Proof. Inspection of the proof of Theorem 5.1 (in particular (11)) shows that all
terms appearing in RUN� are constructed from variables and terms appearing in �,
using 0; 1;+; ·.

Lemma 6.11. Let ‘ be a term not involving |Z | and let �(Z) be a �B
1 -Horn formula.

Then there is a �B
1 -Horn formula $(Z) not involving |Z | such that V1-Horn proves

|Z |6 ‘ ⊃ [�(Z)↔ $(Z)]:

Proof. This argument is similar to Case II in the proof of Theorem 6.5. We can de9ne
the relation i = |Z | by a �B

0 formula B(i; Z) not involving |Z | but using the upper bound
‘ on |Z |, so

V1-Horn � |Z |6 ‘ ⊃ [i = |Z | ↔ B(i; Z)]: (38)

Using Corollary 4.6 (or Corollary 5.3 and the lemma above) we may assume that
B(i; Z) is �B

1 -Horn. Let �′(Z) be the formula

∃R∃R̃∀i ¡ ‘[RUNB(i)(R; R̃; Z) ∧ (¬R(i) ∨ �i(i; Z))];

where �i(i; Z) is obtained from �(Z) by replacing each occurrence of |Z | by i. Then by
the above lemma �′(Z) does not contain |Z |, and by Corollary 6.3

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 227

and (38) V1-Horn proves

|Z |6 ‘ ⊃ [�(Z)↔ �′(Z)]:

It remains to show that �′(Z) is provably equivalent to a �B
1 -Horn formula $(Z)

which does not introduce an occurrence of |Z |. We write �′(Z) as ∃R∃R̃�(R; R̃; Z) and
apply Corollary 5.3 to �(R; R̃; Z) to obtain a �B

1 -Horn formula �′ equivalent to � in
which no terms |R|; |R̃|; |Z | are introduced and take $(Z) to be ∃R∃R̃�′(R; R̃; Z). We
may assume $ is �B

1 -Horn by replacing any positive occurrence of R in �′ by ¬R̃ and
any positive occurrence of R̃ by ¬R.

7. Finite axiomatizability

Here we show that both V 0 and V1-Horn are 9nitely axiomatizable, and that the ∀�B
1

consequences of V1-Horn and the ∀�b
1 consequences of S1

2 are each 9nitely axiomatiz-
able.

Since V 0 de9nes the uniform AC0 functions, it seems plausible that V1-Horn could
be axiomatized by V 0 together with a formula expressing the comprehension axiom
for some predicate which is complete for P under uniform AC0 reductions. Hence
the 9nite axiomatizability of V1-Horn should follow from that for V 0. In our proof of
Theorem 7.5 below, that predicate is the Horn satis9ability problem, which is complete
for P [12].

Theorem 7.1. V 0 is 9nitely axiomatizable.

Proof. We must show that all �B
0 -COMP axioms follow from 9nitely many theorems

of V 0 (see section 3).
Let 2-BASIC+ (or simply B+) denote the 2-BASIC axioms along with 9nitely many

theorems of V 0 asserting basic properties of + and · such as commutativity, asso-
ciativity, distributive laws, and cancellation laws involving +, · , and 6. These can
be proved from the 2-BASIC axioms by induction on �B

0 formulas, as discussed in
Section 3.

It suVces to show that k-ary comprehension (8) for all �B
0 formulas follow from

B+ and 9nitely many such comprehension instances. We use the notation �[Sa; SQ](Sx)
to indicate that the �B

0 formula � can contain the free variables Sa; SQ in addition to
Sx = x1; : : : ; xk . Then COMP�(Sa; SQ; Sb) denotes the comprehension formula

∃Y 6 〈b1; : : : ; bk〉∀x1 ¡ b1 : : :∀xk ¡ bk(Y (Sx)↔ �(Sx)): (39)

We will show that COMP� for the following 12 formulas � will suVce:

�1(x1; x2)≡∃y 6 x1(x1 = 〈x2; y〉);
�2(x1; x2)≡∃z 6 x1(x1 = 〈z; x2〉);

�3[Q1; Q2](x1; x2)≡∃y 6 x1(Q1(x1; y) ∧ Q2(y; x2));

�4[a](x; y)≡ y = a;

�5[Q1; Q2](x; y)≡∃z1 6 y∃z2 6 y(Q1(x; z1) ∧ Q2(x; z2) ∧ y = z1 + z2);

228 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

�6[Q1; Q2](x; y)≡∃z1 6 y∃z2 6 y(Q1(x; z1) ∧ Q2(x; z2) ∧ y = z1 · z2);

�7[Q1; Q2; c](x)≡∃y 6 c(Q1(x; y) ∧ Q2(x; y));

�8[Q1; Q2; c](x)≡∃y1 6 c∃y2 6 c(Q1(x; y1) ∧ Q2(x; y2);∧y1 6 y2);

�9[X;Q; c](x)≡∃y 6 c(Q(x; y) ∧ X (y));

�10[Q](x)≡¬Q(x);

�11[Q1; Q2](x)≡Q1(x) ∧ Q2(x);

�12[Q; c](x)≡∀y 6 cQ(x; y):

In the following lemmas, we abbreviate COMP�i(: : :) by Ci.

Lemma 7.2. For each k¿2 and 16i6k let

$ik(y; z)

≡ ∃x1 6 y : : :∃xi−1 6 y∃xi+1 6 y : : :∃xk 6 y(y = 〈x1; : : : ; xi−1; z; xi+1; : : : ; xk〉)
Then

B+; C1; C2; C3 � COMP$ik :

Proof. We proceed by induction on k. For k = 2 we have $1;2≡�1 and $2;2≡�2. For
k¿2, recall 〈x1; : : : ; xk〉= 〈〈x1; : : : ; xk−1〉; xk〉. Thus $kk ≡�2. For 16i¡k use COMP�3

with Q1 de9ned by COMP�1 and Q2 de9ned by COMP$i; k−1 .

Lemma 7.3. Let t(Sx) be a term which in addition to variables Sx may involve other
variables Sa; SQ. Let $t[Sa; SQ](Sx; y)≡y = t(Sx). Then

B+; C1; : : : ; C6 � COMP$t (Sa; SQ; Sb; d):

Proof. By using algebraic theorems in B+ we may suppose that t(Sx) is a sum of
monomials in x1; : : : ; xk , where the coeVcients are terms involving Sa; SQ. The case t≡ u,
where u does not involve any xi is obtained from COMP�4 with a← u. The cases t≡ xi
are obtained from Lemma 7.2. We then build monomials using COMP�6 repeatedly,
and build the general case by repeated use of COMP�5 .

Lemma 7.4. Let t1(Sx); t2(Sx) be terms with variables among Sx; Sa; SQ. Suppose

$1[Sa; SQ](Sx) ≡ t1(Sx) = t2(Sx);

$2[Sa; SQ](Sx) ≡ t1(Sx) 6 t2(Sx);

$3[Sa; SQ; X](Sx) ≡ X (t1(Sx)):

Then B+; C1; : : : ; C9 � COMP$i , for i = 1; 2; 3.

Proof. COMP$1 (Sa; SQ; Sb) follows from COMP�7 (P1; P2; c; b) with for i = 1; 2, Pi de9ned
from COMP$ti

in Lemma 7.3 with d← t1(Sb) + t2(Sb) + 1, so

∀ Sx ¡ Sb∀y ¡ t1(Sb) + t2(Sb) + 1(Pi(Sx; y)↔ y = ti(Sx)):

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 229

In COMP�7 we take c← t1(Sb) and b←〈b1; : : : ; bk〉. We proceed similarly for COMP$2 ,
using COMP�8 .

For COMP$3 (Sa; SQ; X; Sb) we use COMP�9 (X; P; c; b) with c←t1(Sb) and b←〈b1; : : : ; bk〉
and P de9ned from Lemma 7.3 similarly to P1 above.

Now we can complete the proof of the theorem. Lemma 7.4 takes care of the case
when � is an atomic formula. Then by repeated applications of COMP�10 and COMP�11

we handle the case in which � is quanti9er-free.
Now suppose �(Sx)≡∀y6t(Sx)�(Sx; y). We assume as an induction hypothesis that

we can de9ne Q satisfying

∀ Sx ¡ Sb∀y ¡ t(Sb) + 1[Q(Sx; y)↔ (y 6 t(Sx)→�(Sx; y))]:

Then COMP�(Sb) follows from COMP�12 (Q; c; b) with c← t(Sb) and b←〈b1; : : : ; bk〉.

Theorem 7.5. V1-Horn is 9nitely axiomatizable.

Proof. It suVces to show that Corollary 5.4(i) and (ii) can be proved for any �B
1 -Horn

formula �(y) using 9nitely many theorems of V1-Horn as axioms. We 9rst will show
how to do this for Theorem 5.1(i) and (ii), and then explain how to modify the proof
to get the corollary.

First note that for each �B
1 -Horn formula � we can de9ne a version of PROP� such

that (i) and (ii) in Lemma 5.6 are theorems of V 0. Thus we include the 9nite set of
axioms for V 0 from Theorem 7.1 among the 9nite axioms for V1-Horn. The proof
of Theorem 5.1 depends on Lemma 5.6 (which we have established) and some prop-
erties of HORNSAT. Since HORNSAT is independent of �, we can take these properties
as axioms.

To generalize the proof of Theorem 5.1 in order to prove Corollary 5.4, we incor-
porate the variable y in �(y) as an argument of each of the arrays C;D; V; C̃; D̃; Ṽ to
de9ne the formula PROP�(y) in a modi9ed Lemma 5.6. Then y is not free in PROP�(y)
(although it could be free in PROP�). The de9nition (16) of HORNSAT is modi9ed so
that the parameter y is incorporated as an argument of each of the arrays R; R̃; T; T̃ .
Then Corollary 5.4 follows in the same way as Theorem 5.1.

Theorem 7.6. V1-Horn is axiomatized by its ∀�B
1 consequences.

Proof. It suVces to show that each �B
1 -Horn comprehension axiom is a consequence

of ∀�B
1 theorems of V1-Horn. First we show that the second-order quanti9ers in �B

1 -
Horn formulas (1) can be bounded. That is, for each �B

1 -Horn formula � there is
a �B

1 formula �B such that ∀�B
1 V1-Horn � (�↔�B). To construct �B replace each

second-order quanti9er ∃P in � by a bounded quanti9er ∃P6t, where t is a provable
upper bound on all terms u such that P(u) occurs in �. The equivalence of � and �B

requires only $-COMP instances for formulas $ with no second-order quanti9ers, and
these instances are ∀�B

1 formulas.

230 S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231

The comprehension axiom (6) for �(z) follows from Corollary 5.4(i) and (ii). The
�B

1 form of (i) we need is

∃R6 y∃R̃6 y RUN
′
�(z)(y; R; R̃);

where RUN′
�(z) has suitable bounds on its second-order quanti9ers. For (ii) we do not

need the clause involving R̃. If we replace � by �B then a suitable prenex form of
the result is ∀�B

1 .

Corollary 7.7. The ∀�B
1 consequences of V1-Horn are 9nitely axiomatizable. The ∀�b

1
consequences of S1

2 are 9nitely axiomatizable.

Proof. The 9rst sentence follows by compactness from Theorems 7.6 and 7.5. Since
V 1 is ∀�B

1 conservative over P-def [24], it follows from Theorem 6.7 that the ∀�B
1

consequences of V 1 and of V1-Horn are the same, and hence are 9nitely axiomati-
zable. The second sentence of the Corollary is equivalent to asserting that the ∀�B

1
consequences of V 1 are 9nitely axiomatizable, by the RSUV isomorphism.

References

[1] D.M. Barrington, N. Immerman, H. Straubing, On uniformity within NC1, J. Comput. System Sci. 41
(3) (1990) 274–306.

[2] S. Buss, Bounded Arithmetic, Bibliopolis, Naples, 1986.
[3] S. Buss, Axiomatizations and conservation results for fragments of bounded arithmetic, Contem. Math.

106 (1990) 57–84.
[4] S. Buss, Relating the bounded arithmetic and polynomial time hierarchies, Ann. Pure Appl. Logic 75

(1995) 67–77.
[5] S.A. Cook, Feasibly constructive proofs and the propositional calculus, in: Proc. Seventh Annu. ACM

Symp. on Theory of Computing, Albuquerque, NM, 1975, pp. 83–97.
[6] S.A. Cook, CSC 2429S: proof complexity and bounded arithmetic, course notes, 1998, URL:

“http://www.cs.toronto.edu/∼sacook/csc2429h”.
[7] S.A. Cook, Relating the provable collapse of P to NC1 and the power of logical theories, DIMACS

Ser. Discrete Math. Theoret. Comput. Sci. 39 (1998) 73–91.
[8] S.A. Cook, A. Urquhart, Functional interpretations of feasibly constructive arithmetic, Ann. Pure Appl.

Logic 63 (2) (1993) 103–200.
[9] R. Fagin, Generalized 9rst-order spectra and polynomial-time recognizable sets, complexity of

computation, SIAM-AMC Proc. 7 (1974) 43–73.
[10] E. Gr%adel, The expressive power of second order Horn logic, in: Proc. 8th Symp. on Theoretical

Aspects of Computer Science STACS ‘91, Hamburg, 1991, Lecture Notes in Computer Science, Vol.
480, Springer, Berlin, pp. 466–477.

[11] E. Gr%adel, Capturing complexity classes by fragments of second order logic, Theoret. Comput. Sci. 101
(1992) 35–57.

[12] R. Greenlaw, H.J. Hoover, W.L. Ruzzo, Limits to Parallel Computation, Oxford University Press,
Oxford, 1995.

[13] N. Immerman, Relational queries computable in polytime, Inform. Control 68 (1986) 86–104.
[14] N. Immerman, Descriptive Complexity, Springer, New York, 1999.
[15] J. KrajiZcek, Bounded Arithmetic, Propositional Logic, and Complexity Theory, Cambridge University

Press, New York, USA, 1995.
[16] J. KrajiZcek, P. Pudl[ak, G. Takeuti, Bounded arithmetic and the polynomial time hierarchy, Ann. Pure

Appl. Logic 52 (1991) 143–153.

http://www.cs.toronto.edu/~sacook/csc2429h

S. Cook, A. Kolokolova / Annals of Pure and Applied Logic 124 (2003) 193–231 231

[17] D. Leivant, Characterization of complexity classes in higher-order logic, in: Proc. Second Annu. Conf.
on Structure in Complexity Theory, Ithaca, NY, 1987, pp. 203–217.

[18] D. Leivant, Descriptive characterizations of computational complexity, J. Comput. System Sci. 39 (1989)
51–83.

[19] A. Razborov, An equivalence between second-order bounded domain bounded arithmetic and 9rst-order
bounded arithmetic, in: P. Clote, J. KrajiZcek (Eds.), Arithmetic, Proof Theory and Computational
Complexity, Clarendon Press, Oxford, 1993, pp. 247–277.

[20] U. Sch%oning, R. Pruim, Gems of Theoretical Computer Science, Springer, Berlin, 1998.
[21] L.J. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1977) 1–22.
[22] G. Takeuti, RSUV isomorphism, in: P. Clote, J. KrajiZcek (Eds.), Arithmetic, Proof Theory and

Computational Complexity, Clarendon Press, Oxford, 1993, pp. 364–386.
[23] M. Vardi, Complexity of relational query languages, Inform. Control 68 (1986) 137–146.
[24] D. Zambella, Notes on polynomially bounded arithmetic, J. Symbolic Logic 61 (3) (1996) 942–966.

	A second-order system for polytime reasoning based on Grädel's theorem
	Introduction
	Bounded arithmetic
	Descriptive complexity
	Our results

	Second-order formulas and complexity classes
	V1-Horn and other second-order theories
	Formulas provably equivalent to 1B-Horn
	Simulating first-order bounded existential quantification
	The 0B formulas are provably equivalent to 1B-Horn
	Collapse of V-Horn to V1-Horn

	Encoding the Horn SAT algorithm by a 1B-Horn formula
	Definition of PROP (C,C,D,D,V,V)
	Definition of HORNSAT(a,b,C,C,D,D,V,V, R,R)
	Proof of Theorem 5.1
	Counting in V1-Horn

	Equivalence of V1-Horn, P-defand QPV
	Adding function symbols to V1-Horn
	Specification of P-def
	Relating V1-Hornand P-def

	Finite axiomatizability
	References

