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Abstract. There are many ways to define complexity in logic. In finite
model theory, it is the complexity of describing properties, whereas in
proof complexity it is the complexity of proving properties in a proof
system. Here we consider several notions of complexity in logic, the con-
nections among them, and their relationship with computational com-
plexity. In particular, we show how the complexity of logics in the setting
of finite model theory is used to obtain results in bounded arithmetic,
stating which functions are provably total in certain weak systems of
arithmetic. For example, the transitive closure function (testing reach-
ability between two given points in a directed graph) is definable using
only NL-concepts (where NL is non-deterministic log-space complexity
class), and its totality is provable within NL-reasoning.

1 Introduction

How do we talk about the concept of hardness in the context of mathemat-
ical logic? Historically, there are several approaches using different notions of
hardness, including the following:

1. The hardness of describing an object (by some formula)
2. The hardness of proving properties of an object in a formal system.
3. The hardness of solving a problem (e.g., when the problem is expressed in

the language of logic. )

These notions of hardness loosely correspond to the following fields

1. Finite model theory (in particular, descriptive complexity).
2. Bounded arithmetic and proof complexity
3. Complexity theory and some areas of computational logic

Each of these fields has tight and well-studied connections to computational
complexity theory. However, the direct relationships among different notions
of hardness in logic are only now becoming a focus of attention. Here we will
present, as main example of a such a direct relationship, results in bounded
arithmetic we obtain using the notion of hardness from descriptive complexity.

We start with the canonical notion of hardness as defined in complexity
theory.



2 The computational complexity setting

The computational complexity of a problem is measured in terms of resources
used by an algorithm to solve the problem. The standard resources are space
(memory) and time. Algorithms can be deterministic and non-deterministic.
For example, the famous class NP consists of problems solvable by the non-
deterministic polynomial-time algorithms. Similarly, the problems solvable by
non-deterministic log-space algorithms comprise the class NL.

A complexity class that has very robust definitions in the context of logic is
uniform AC0, the class of problems solvable by a uniform family of constant-depth
polynomial-size boolean circuits. In bounded arithmetic, this class corresponds to
the theory V 0 or, in the first-order setting, I∆0 (where I∆0 is Peano Arithmetic
with induction restricted to bounded formulae). In the descriptive complexity
setting AC0 corresponds to the first-order logic (data complexity of first-order
logic is AC0 when the language contains arithmetic). We will discuss it in more
detail later.

A classical example of a problem complete for NP is 3-colorability: given a
graph as an input, determine if it can be colored with three colors so that no
edge connects vertices of the same color. A problem complete for NL is graph
reachability (determining if there is a path between two vertices). The class
AC0 is one of the few for which there are non-trivial lower bounds: the Parity
problem of determining if an input string has an even number of 1s is not in
AC0. That is, there is no first-order formula which would be true on all and only
structures with even number of elements (in fact, since this result holds in a
non-uniform setting, adding to the languages any kind of numerical predicates,
even undecidable ones, would still not help a first-order formula to express a
parity of a string). Thus binary addition can be done in AC0, but multiplication
cannot.

3 Finite model theory and descriptive complexity

Finite model theory developed as a subfield of model theory with emphasis
on finite structures. In this new setting many of the standard techniques of
model theory, most notably compactness, do not apply. Since testing if a first-
order formula has a finite model is undecidable [Tra50], our focus will be on
the complexity of model checking: given a finite structure and formula of some
logic, decide if this structure is a model of this formula. Considering both the
formula and the structure as inputs gives fairly high complexity: checking if a
first-order formula holds on a Boolean (two-element) structure is complete for
PSPACE (class of problems solvable in polynomial space). Here we consider data
complexity of the model checking, where a formula is fixed and the only input is
the structure. For example, a formula might encode the conditions for a graph
to be 3-colourable, and structures are graphs.

This leads us to descriptive complexity, the area studying the direct corre-
spondence between data complexity of logics of different power and complexity



classes. In this setting a logic is said to capture a complexity class over a class
of structures if, informally, the model checking problem for the logic is solvable
in the complexity class and every problem in the class is representable in the
logic.A classical reference on the subject is the book “Descriptive complexity”
by Immerman [Imm99].

Definition 1 (Capture by a logic). Let C be a complexity class, L a logic
and K a class of finite structures. Then L captures C on K if

1. For every L-sentence φ and every A ∈ K, testing if A |= φ with φ fixed and
an encoding of A as an input can be done in C.

2. For every collection K ′ of structures closed under isomorphism, if this col-
lection is decidable in C then there is a sentence φK′ of L such that A |= φK′

iff A ∈ K ′, for every A ∈ K.

In descriptive complexity the class of structures is often fixed to be arithmetic
structures, that is, structures with min,max,+,×,≤,= in the language which
receive standard interpretations. In particular, the universe of a structure is
always considered to be {0, . . . , n− 1}.

Example 1 (Parity(X)). This is a formula over successor structures (with
min,max, S ∈ τ), models of which have interpretations of X as sets with an
odd number of 1’s. It encodes a dynamic-programming algorithm for computing
parity of X: Podd(i) is true (and Peven(i) is false) iff the prefix of X of length i
contains an odd number of 1’s.

∃Peven∃Podd∀iPeven(min) ∧ ¬Podd(min)
∧(Podd(max) ↔ ¬X(max)) ∧ (¬Peven(i+ 1) ∨ ¬Podd(i+ 1))
∧(Peven(i) ∧X(i) → Podd(i+ 1)) ∧ (Podd(i) ∧X(i) → Peven(i+ 1))
∧(Peven(i) ∧ ¬X(i) → Peven(i+ 1)) ∧ (Podd(i) ∧ ¬X(i) → Podd(i+ 1))

The first capture result that started this field is due to Fagin [Fag74], who
showed that existential second-order logic captures precisely the complexity class
NP. His proof has a similar structure to Cook’s original proof of NP-completeness
of propositional formula satisfiability, but instead of propositional variables Fa-
gin used existentially quantified second-order variables. A notable feature of
Fagin’s result is that it holds over all structures, whereas AC0 vs. first-order logic
only holds for arithmetic structures. A big open problem is whether there is a
logic capturing on all (including unordered) structures the complexity class P of
polynomial-time decidable languages.

3.1 Logics between first-order and existential second-order

In the data complexity setting, first-order logic captures AC0 and existential
second-order logic already captures NP. However, many interesting complexity



classes lie between these two, in particular classes P (polynomial time) and NL
(non-deterministic logspace). The two ways to capture these classes (in the pre-
sense of order) are either by extending first-order logic with additional predicates,
or restricting second-order logic. In the first approach, a logic for NL is obtained
by adding a transitive closure operator to first-order logic, and P is captured by
first-order logic together with a least fixed point operator [Imm83,Imm82,Var82].
Here we will concentrate on the second approach, due to Grädel [Grä91].

Definition 2. Restricted second-order formulae are of the form
∃P1 . . . Pk∀x1 . . . xlψ(P̄ , x̄, ā, Ȳ ), where ψ is quantifier-free.

Two important types of restricted second-order formulae are SO∃-Horn and
SO∃-Krom:

– SO∃-Horn: ψ is a CNF with no more than one positive literal of the form
Pi(t) per clause.

– SO∃-Krom: ψ is a CNF with no more than two Pi literals per clause.

In particular, the formula for Parity in the example above is both a second-
order Horn and a second-order Krom formula.

Theorem 1 ([Grä92]). Over structures with successor, SO∃-Horn and
SO∃-Krom capture complexity classes P and NL, respectively.

4 Bounded arithmetic

Just like in complexity classes P and NP the computation length is bounded by a
polynomial, in bounded arithmetic quantified variables are bounded by a term in
the language (e.g., a polynomial in free variables of a formula). Here, instead of
describing functions by formulae the goal is to prove their totality within a sys-
tem; we will say that a system of arithmetic captures a function class if it proves
totality of all and only functions in this class. In this setting, arithmetic reasoning
with formulas having an unbounded existential quantifier captures primitive re-
cursive functions in the same sense that reasoning with an appropriate bounded
version of these formulae captures polynomial-time functions.

4.1 The language and translation from the finite model theory
setting

There are two notions of hardness appearing in the setting of theories of arith-
metic. One of them is a “descriptive” notion of arithmetic formulae representing
(that is, describing) a property; another is a more recursion-theoretic notion in
terms of the provable totality of functions (note that term “defining” is used
in both contexts in different literature). In this section we show how results in
descriptive complexity, translated into the framework of bounded arithmetic to
become representability results, give us provability of properties.



Definition 3. Define ΣB
0 to be the class of bounded formulas with no second

order quantifiers over L2, and ΣB
1 as a closure of ΣB

0 under bounded existential
second-order quantification. ΣB

i is defined inductively in a natural way.

It seems that the correspondence of logics in finite model theory framework
with representability in bounded arithmetic is folklore. This translation works
most naturally in the setting of second-order systems of arithmetic such as sys-
tems Vi. Here, by “second-order” systems we mean two-sorted, with one sort for
numbers, and another for strings (viewed as sets of numbers). For a thorough
treatment of this framework, please see [Coo03]

Let φ be a (possibly second-order) formula with free relational variables
R1, . . . , Rk over a vocabulary that contains arithmetic. The corresponding ΣB

i

formula has Ri as parameters, where non-monadic relational variables are rep-
resented using a pairing function, as well as an additional parameter n denoting
the size of the structure. It is easy to see that this formula holds on its free
variables iff the corresponding structure is a model of the original formula in the
finite model theory setting.

In particular, arithmetic versions of SO∃-Horn and SO∃-Krom are subsets of
ΣB

1 , with no existential first-order quantifier and Horn (resp. Krom) restriction
on the occurrences of quantified second-order variables. In this paper we will
abuse the notation and say SO∃-Horn and SO∃-Krom meaning their translation
into the language of arithmetic.

Example 2. The Parity formula defined in example 1 can be written as follows
in the bounded arithmetic setting:

Parity(X) ≡ ∃Peven∃Podd∀i < |X|
Peven(0) ∧ ¬Podd(0) ∧ Podd(|X|) ∧ (¬Peven(i+ 1) ∨ ¬Podd(i+ 1))
∧(Peven(i) ∧X(i) → Podd(i+ 1)) ∧ (Podd(i) ∧X(i) → Peven(i+ 1))
∧(Peven(i) ∧ ¬X(i) → Peven(i+ 1)) ∧ (Podd(i) ∧ ¬X(i) → Podd(i+ 1))

Here, second-order variables are implicitly bounded by the largest value of
the indexing term (i + 1 = |X| in this example). Note that here it is possible
to reference Podd(|X|), and so we do to simplify the formula. Of course, a direct
translation would not account for such details.

4.2 Systems of bounded arithmetic

Early study of weak systems of arithmetic concentrated on restricted fragments
of Peano Arithmetic, e.g., I∆0 in which induction is over bounded first-order
formulae [Par71]. This system, I∆0, was used by Ajtai [Ajt83] to obtain lower
bounds for the Parity Principle, which implied lower bounds for the complexity
class AC0. A different approach was used by Cook: in 1975 he presented a system
PV for polynomial-time reasoning [Coo75]. PV is an equational system with a
function for every polynomial-time computable function.



The major development in bounded arithmetic came in the 1985 PhD thesis
of S. Buss [Bus86]. There, several (classes of) systems of bounded arithmetic
were described, capturing major complexity classes such as P and EXP (viewed
as classes of functions). The best known system is S1

2 , which is a first-order
system capturing P. To capture higher complexity classes such as PSPACE and
EXP, Buss extends his systems to second-order.

In second-order systems we consider here, the richer language of Buss’s first-
order systems is simulated using second-order objects. Second-order quantified
variables are strings of bounded length; the notation ∃Z ≤ b corresponds to
∃Z |Z| ≤ b. First-order objects or numbers are index variables: their values are
bounded by a term in number variables and lengths of second-order variables.
The translation between first and second-order system is given by the RSUV
isomorphism due to [Raz93,Tak93]. Here, the isomorphism is between first-order
systems (R and S) and second-order systems (U and V). In particular, it trans-
lates Buss’s S1

2 into V1, a system that reasons with existential second-order
definable predicates.

Let L2 be the language of Peano Arithmetic with added terms |X| (length of
X) and X(t) (membership of t in X), where X is second-order. We look at the
systems axiomatized by Peano axioms on the number variables, together with
the axioms defining length of second order variables: L1: X(y) → y < |X| and
L2: y + 1 = |X| → X(y). Additionally, there is a comprehension axiom

∃Z ≤ b∀i < b(Z(i) ↔ φ(i, ā, X̄)), (Comprehension)

where φ is a class of formulae such as ΣB
1 or SO∃-Horn. Such systems of arith-

metic reason with objects of complexity allowed in the comprehension axiom.
For example, reasoning in V0 is limited to reasoning with ΣB

0 -definable objects.

Definition 4. For an integer i ≥ 0, define Vi to be the system with comprehen-
sion over ΣB

i formulas (e.g., V1 has comprehension over ∃SO formulae). For
a general class Φ of formulas, V -Φ is the system with comprehension over Φ.
In particular, V -Horn and V -Krom are the systems with comprehension over
SO∃-Horn and SO∃-Krom, respectively.

Note that even in the weakest of this class of systems, V0 with its compre-
hension over formulae with no second-order quantifiers, it is possible to prove
induction and minimization principles for the respective class of formulae from
comprehension and length axioms.

An interested reader can find more information in [Kra95,Bus86,Coo03] and
an upcoming book by Stephen Cook and Phuong Nguyen.

5 Defining functions in the bounded arithmetic setting

In the setting of bounded arithmetic, the “hardness” is usually taken to be the
complexity of properties provable in this system. In particular, the correspon-
dence with complexity-theoretic notion of hardness is via the provability of the



function totality. That is, the strength of a system of arithmetic is associated
with the computational complexity of functions that this system proves total.
For example, a version of Peano Arithmetic with one unbounded existential
quantifier allowed in induction formulae (IΣ1) proves the totality of primitive
recursive functions, and V0 where all quantifiers are bounded does the same for
AC0 functions (in the second-order setting).

Definition 5. (Capture by a system of arithmetic) A system of arithmetic cap-
tures a function class if it proves totality of all and only functions in this class.

Traditionally, functions are introduced by their recursion-theoretic charac-
terization (see [Cob65] for the original such result or [Zam96]). For example,
Cobham’s characterization of P uses limited recursion on notation:

F (0, x̄, Ȳ ) = G(x̄, Ȳ ) (1)
F (z + 1, x̄, Ȳ ) = cut(p(z, x̄, Ȳ ),H(z, x̄, Ȳ , F (z, x̄, Ȳ ))). (2)

Here, the function cut(x, y) cuts out the rest ofH(..) beyond the bound p(z, x̄, Ȳ ),
where p() is a polynomial (that is, a term in the language).

Since we are trying to relate the expressive power of the formulas in compre-
hension and complexity of functions, we introduce function symbols by setting
their bitgraphs to be formulas from the comprehension scheme as follows.

Definition 6. Let Φ be a logic capturing a complexity class C in the descriptive
setting. We define a corresponding function class FC by defining functions f
and F in FC as follows:

z = f(x̄, Ȳ ) ↔ φ(z, x̄, Ȳ ) F (x̄, Ȳ )(i) ↔ i < t ∧ φ(i, x̄, Ȳ )

Here, f and F are number and string functions, respectively, and φ ∈ Φ. That is,
define functions by formulae from Φ by stating that graphs of number functions
and bitgraphs of string functions are representable by formulae from Φ.

In particular, NL functions are the ones definable by SO∃-Krom formulae and
bitgraphs of polynomial-time functions are described by SO∃-Horn formulae.

With these definitions we obtain the following capture results.

– System V0 captures complexity class AC0. [Zam96,Coo02]
– Systems V -Horn and V -Krom with comprehension over SO∃-Horn and
SO∃-Krom, respectively, capture P and NL. [CK01,CK03]

– System V1 also captures P. [Zam96]

Note that the system V1, although likely stronger than V -Horn because it
reasons with NP-predicates, also captures P. That is, ΣB

1 -theorems of V1 and V -
Horn are the same, but it is likely that V -Horn does not prove the comprehension
axiom of V1, which is a ΣB

2 statement. This leads to the following question:



6 When do systems based on formulas describing a
complexity class capture the same class?

What makes systems such as V0, V -Horn and V -Krom “minimal” among sys-
tems capturing the corresponding classes? They operate only with objects from
the class, and yet prove totality of all functions they can define. The informal
answer is provable closure under first-order operations. If a system can prove
its own closure under AC0 reductions such as conjunction, disjunction and com-
plementation, then, with some additional technicalities, this system can prove
totality of all functions definable by objects in its comprehension axiom.

Let C be a complexity class. Suppose that ΦC is a class of (existential second-
order) formulas that captures C in the descriptive complexity setting. We define
a theory of bounded arithmetic V -ΦC to be V0 together with comprehension over
bounded ΦC . The following is an informal statement of the general result:

Claim. [Kol04,Kol05] Let AC0 ⊆ C ⊆ P. Suppose that ΦC is closed under first-
order operations provably in V -ΦC . Also, suppose that for every φ(x̄, Ȳ ) ∈ ΦC ,
if V -ΦC ` φ then there is a function F on free variables of φ which is computable
in C and witnesses existential quantifiers of φ. Then the class of provably total
functions of V -ΦC is the class of functions computable in C.

Two examples of such systems are V -Horn and V -Krom. In particular, V -
Horn formalizes and proves correctness of Horn formula satisfiability algorithm.
Although V -Horn is provably in the system equivalent to limited recursion-based
systems of polynomial-time reasoning, it has an additional nice feature: it is
finitely axiomatizable. The system V -Krom formalizes the non-trivial inductive
counting algorithm of Immerman [Imm88,Sze88], used to prove the closure of NL
(and thus SO∃-Krom) under complementation. However, we don’t know whether
NP = coNP and thus whether the class of predicates in the comprehension axiom
of V1 is closed under complementation. Moreover, even if it is proven that NP =
coNP, the proof has to be constructive enough to be formalizable within V1 to
allow us to apply the claim.

This brings up an interesting meta-question: when are the properties of a
complexity class itself provable within this class? We were able to prove the
basic properties of P and NL with reasoning no more complex then the class
itself. However, for classes such as symmetric logspace, now proven to be equal
to logspace [Rei04], it is not clear whether the proof of complementation (or the
proof of equivalence with logspace) are formalizable using only reasoning within
this class. This line of research is related to other meta-questions in complexity
theory such as what proof techniques are needed to prove complexity separations.
For example, natural proofs of Razborov and Rudich [RR97] address the question
of NP vs. P/poly, motivated by the P vs. NP question.

7 Conclusions

In this paper we touch upon one example of a connection between two different
notions of hardness: the hardness of describing a property versus the hardness



of proving a property. Another line of research that should be mentioned here
is proof complexity. In proof complexity, the object of study is proof systems
such as resolution system and Frege system; there, the lengths of proofs is the
main complexity measure. For many systems of bounded arithmetic there are
proof systems that are their non-uniform counterparts (that is, the system of
arithmetic proves soundness of the proof system and the proof systems proves the
axioms of the system of arithmetic). The line of research exploring connections
between finite model theory and proof complexity is pursued by Atserias. He
uses his results in finite model theory to obtain resolution proof system lower
bounds [Ats02], and, in his later work with Kolaitis and Vardi, uses constraint
satisfaction problems as a generic basis for a class of proof system [AKV04].

Complexity in logic is a broad area of research, with many problems still
unsolved. Little is known about connections among different settings and notions
of hardness. Here we have given one such example and have mentioned a couple
more; other connections among various notions of complexity in logic are waiting
to be discovered.
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