
Comparison of Construction Algorithms for
Minimal, Acyclic, Deterministic, Finite-State

Automata from Sets of Strings

Jan Daciuk

Alfa-Informatica, Rijksuniversiteit Groningen
j.daciuk@let.rug.nl

Abstract. This paper compares various methods for constructing min-
imal, deterministic, acyclic, finite-state automata (recognizers) from sets
of words. Incremental, semi-incremental, and non-incremental methods
have been implemented and evaluated.

1 Motivation

During last 12 years, one could see emergence of construction methods special-
ized for minimal, acyclic, deterministic, finite-state automata. However, there
are various opinions about their performance, and how they compare to more
general methods. Only partial comparisons are available. What has been com-
pared so far was complete programs, which performed not only construction,
but computation of a certain representation (e.g. space matrix representation,
or various forms of compression).

The aim of this paper is to give answers to the following questions:

– What is the fastest construction method?
– What is the most memory-efficient method?
– What is the fastest method for practical applications?
– Do incremental methods introduce performance overhead?

The third question is not the same as the first one, because one has to
take into account the size of data and available main memory. Even the fastest
algorithm may become painfully slow during swapping.

2 Construction Methods

Due to lack of space, the construction methods under investigation have only
been enumerated here. The reader is referred to the bibliography for proper de-
scriptions. Some of the methods use a structure called the register of states. In
those algorithms, states in an automaton are divided into those that have been
minimized, i.e. they are unique in that part, and other states, i.e. those that
are to be minimized. The register is a hash table, and two states are considered

J.-M. Champarnaud and D. Maurel (Eds.): CIAA 2002, LNCS 2608, pp. 255–261, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



256 J. Daciuk

Table 1. Characteristics of data used in experiments

strings automaton
words characters av. len. states trans.

German words 716 273 10 221 410 14.27 45 959 97 239
morph. 3 977 448 364 681 813 91.69 107 198 435 650

French words 210 284 2 254 846 10.72 16 665 43 507
morph. 235 566 17 111 863 72.64 32 078 66 986

Polish words 74 434 856 176 11.50 5 289 12 963
morph. 92 568 5 174 631 55.90 84 382 106 850

/usr/dict/words 45 407 409 093 9.01 23109 47346

equivalent if they are either both final or both non-final, and they have the same
transitions (the same number, labels, and targets). Methods 1, 3, and 4 require
sorted data; the strings must be sorted lexicographically, lexicographically on re-
versals of strings, and on decreasing lengths respectively. The following methods
have been investigated:

1. Incremental construction for sorted data ([2]).
2. Incremental construction for unsorted data ([2]).
3. Semi-incremental construction by Bruce Watson ([7]).
4. Semi-incremental construction by Dominique Revuz ([4]).
5. Building a trie and minimizing it using the Hopcroft algorithm ([3], [1]).
6. Building a trie and minimizing it using the minimization phase from the

incremental construction algorithms (postorder minimization).
7. Building a trie and minimizing it using the minimization phase from the

algorithm by Dominique Revuz (lexicographical sort [5]).

3 Experiments

Data sets for evaluation were taken from the domain of Natural language Pro-
cessing (NLP). Acyclic automata are widely used as dictionaries. Both word
lists, and morphological dictionaries, for German, French, and Polish, as well
as a word list for English were used. Word lists and morphological dictionar-
ies have different characteristics. Strings in word lists are usually short, sharing
short suffixes. Strings in morphological dictionaries are much longer, with long
suffixes shared between entries. The data is summarized in Table 1.

All methods were implemented in a single program, with data structures
and most functions shared among different algorithms. Unfortunately, there is
not enough space in a short paper to describe the implementation in detail. In
the experiments, the hash function had 10001 possible values. The register was
implemented with an overflow area for each hash value being a set class from
the C++ standard template library - a tree-like structure.



Comparison of Construction Algorithms 257

0

20000

40000

60000

80000

100000

120000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

st
at

es

words

sorted
Revuz

Watson
trie

Fig. 1. Memory requirements for English words.

0

0.5

1

1.5

2

2.5

20000 40000 60000 80000 100000 120000 140000 160000 180000 200000 220000

us
er

 ti
m

e 
(s

ec
)

words

sorted
unsorted

Revuz
Watson

trie+postorder
trie+lexsort

trie+Hopcroft

Fig. 2. Execution time for Polish words

Figure 1 shows how the number of states grows during construction of an
automaton for a representative data set using various algorithms. The points la-
beled “trie” represent non-incremental methods. Memory requirements for con-
struction algorithms are proportional to the number of states of the largest au-



258 J. Daciuk

0

100

200

300

400

500

600

700

800

900

1000

0 50000 100000 150000 200000 250000

us
er

 ti
m

e 
(s

ec
)

words

sorted
unsorted

Revuz
Watson

trie+postorder
trie+lexsort

trie+Hopcroft

Fig. 3. Execution time for French morphology

tomaton during construction. The diagram shows that only incremental methods
keep the automaton minimal throughout the process – other methods require
memory for additional redundant states before they arrive at the minimal au-
tomaton. The intermediate automaton for non-incremental methods can be much
larger than minimal. Memory requirements for the incremental method for un-
sorted data are identical to those for the sorted method on the same data, and
only slightly higher for data sorted for other methods. The Watson’s algorithm
displays an unusual behavior. The largest number of states is achieved approx-
imately half way during the construction process. This phenomenom is caused
by two factors: sorting of input data (from longest strings to the shortest ones),
and minimization scheme (prefixes cause minimization of larger words). Initial
memory requirements for Watson’s algorithm are higher than for a trie made
from data sorted lexicographically, as longer words come first. They become
lower towards the end of data, as shorter words trigger minimization.

To test the relation between the speed, and the size of the data, each algo-
rithm was tested on 0.1, 0.2, . . . 0.9, and on the whole data. In case of Revuz’s
algorithm, and Watson’s algorithm, those parts were sorted accordingly, instead
of taking the same number of words from the beginning of the whole file sorted
according to the requirements. This is different than measurements of memory
requirements, because they were all taken during a single run on the whole ap-
propriate file. Also, due to multiuser, multitask unix environment, only processor
times were measured, not the elapsed “real” time. It means that the effects of
swapping do not show up on diagrams. Only initial values for trie + Hopcroft



Comparison of Construction Algorithms 259

minimization algorithm are shown to underline differences between other al-
gorithms. For most data, the trie + postorder minimization method was the
fastest. It was slightly faster than the algorithm for sorted data, and in some
cases their values are not distinguishable on diagrams. For morphological dictio-
naries, Revuz’s algorithm was faster (Fig 3). This happens because in that data
very long common suffixes were present. The INTEX program [6] uses Revuz’s
algorithm without pseudo-minimization phase to save both time and disk space,
but annotations are kept short, and their expansions are kept elsewhere.

4 The Fastest Algorithm

Surprisingly, the fastest construction algorithm is not yet described in literature.
This is probably due to its simplicity. We define a deterministic finite state
automaton as M = (Q, Σ, δ, q0, F ), where Q is the set of states, Σ is the alphabet,
δ ∈ Q×Σ −→ Q∪{⊥} is the transition function, q0 is the initial state, and F ⊆ Q
is the set of final states. A somewhat formally awkward notation of assignment
to the delta function in the algorithm below means creating or modifying a
transition. This algorithm has exactly the same complexity as both incremental
algorithms from [2].

func trie plus postorder minimization;
start state := construct trie; Register := ∅;
postorder minimize(start state);
return start state;

cnuf

func construct trie();
start := new state;
while file not empty

word := next word form file; i := 0; s := start;
while i < length(word)

if δ(s, wordi) �= ⊥ → δ(s, wordi) := new state; fi
s := δ(s, wordi); i := i + 1;

elihw
F := F ∪ {s};

elihw
cnuf

proc postorder minimize(s);
foreach a ∈ Σ : δ(s, a) �= ⊥

postorder minimize(δ(s, a));
if ∃q∈Register δ(s, a) ≡ q → δ(s, a) = q;
else Register := Register ∪{s}; fi

hcaerof
corp



260 J. Daciuk

5 Conclusions

– For unsorted data, the trie + postorder register-based minimization algo-
rithm is the fastest, provided that we have enough memory to use it. The
difference between the minimal automaton and the corresponding trie can
be huge.

– All but incremental methods produce intermediate automata much larger
than the minimal ones. All alternatives to the incremental algorithm for
unsorted data build a trie first – the worst possible case from the point of
view of memory efficiency. Therefore, the incremental algorithm for unsorted
data is the fastest algorithm for unsorted data in practical applications, and
in fact the only algorithm for that purpose.

– For typical sorted data, the trie + postorder register-based minimization
algorithm can be used, but as it builds a trie, it requires huge amounts
of memory. The incremental algorithm for sorted data can be used instead
with almost no performance penalty. For sorted data where strings share long
suffixes, like in certain morphological data, Revuz’s algorithm is the fastest.
However, such data can easily be transformed so that the long suffixes are
stored separately (as it is done e.g. in INTEX). For the transformed data,
Revuz’s algorithm is no longer the fastest one. It also requires non-standard
sorting that cannot be performed efficiently using ready-made programs.
Moreover, tools for constructing natural language morphologies have addi-
tional data that can be used for faster construction algorithms. The author
has implemented such an algorithm.

– Both fully incremental algorithms are the most economical in their use
of memory. They are orders of magnitude better than other, even semi-
incremental methods. Even for a very small data set, like the one presented
on Figure 1, the intermediate automata in semi-incremental methods are 3-4
times larger than the minimal ones.

– Both incremental algorithms are the fastest in practical applications, i.e. for
large data sets. The algorithm for sorted data is the fastest, but if data is
not sorted, sorting it (and storing it in memory) may be more costly than
using the algorithm for unsorted data. However, when the same data is used
repeatedly, sorting is always beneficial.

– It seems that incremental algorithms do not introduce much overhead when
compared to non-incremental methods. The differences between the incre-
mental sorted data algorithm and its non-incremental counterpart are mini-
mal. The non-incremental version of the semi-incremental Revuz’s algorithm
(trie + lexical sort) is sometimes faster than the original version for words,
and always slower for morphologies.

– Trie + Hopcroft minimization is the slowest algorithm. While all other al-
gorithms are linear, this one has an additional O(log(n)) overhead, and it is
quite complicated compared to register-based algorithms.

Acknowledgements. The outline of experiments was discussed with Bruce
Watson. This research was carried out within the framework of the PIONIER



Comparison of Construction Algorithms 261

Project Algorithms for Linguistic Processing, funded by NWO (Dutch Organi-
zation for Scientific Research) and the University of Groningen. The program
used in the experiments is available from
http://www.eti.pg.gda.pl/∼jandac/adfa.html.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley Publishing Company, 1974.

2. Jan Daciuk, Stoyan Mihov, Bruce Watson, and Richard Watson. Incremental con-
struction of minimal acyclic finite state automata. Computational Linguistics,
26(1):3–16, April 2000.

3. John E. Hopcroft. An n log n algorithm for minimizing the states in a finite au-
tomaton. In Z. Kohavi, editor, The Theory of Machines and Computations, pages
189–196. Academic Press, 1971.

4. Dominique Revuz. Dictionnaires et lexiques: méthodes et algorithmes. PhD thesis,
Institut Blaise Pascal, Paris, France, 1991. LITP 91.44.

5. Dominique Revuz. Minimisation of acyclic deterministic automata in linear time.
Theoretical Computer Science, 92(1):181–189, 1992.

6. Max Silberztein. INTEX tutorial notes. In Workshop on Implementing Automata
WIA99 – Pre-Proceedings, pages XIX–1 – XIX–31. 1999.

7. Bruce Watson. A fast new (semi-incremental) algorithm for the construction of
minimal acyclic DFAs. In Third Workshop on Implementing Automata, pages 91–
98, Rouen, France, September 1998. Lecture Notes in Computer Science, Springer.


	Motivation
	Construction Methods
	Experiments
	The Fastest Algorithm
	Conclusions

