
A Formal Model for Representing Component
Interfaces and Their Interaction

NECEC'04
The Fourteenth Annual Newfoundland Electrical and

Computer Engineering Conference

St. John's, NL
October 12, 2004

Donald C. Craig

Department of Computer Science
Memorial University of Newfoundland

St. John's, Canada A1B 3X5

1

Complexity in Software Engineering

• Construction of large-scale software projects is becoming increasingly dif-
�cult as architectures become more sophisticated.

• To combat complexity, there has been a natural, evolutionary trend from
low-level constructs to higher-level abstractions in the software engineering
process:

– structured programming
– object-oriented programming
– aspect-oriented programming
– architecture description languages

• In recent years, component-based software engineering has been proposed
as a means of mitigating the complexities associated with construction of
large software architectures.

2

Component Background

• Informal de�nitions of components are numerous. For example:

– �An independently deliverable piece of functionality providing access
to its services through interfaces.�

Alan W. Brown (2001) An Overview of Components and Component-Based Development.

– �A software component is a unit of composition with contractually
speci�ed interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to
composition by third parties.�

Clemens Szyperski (2002) Component Software : Beyond Object-Oriented Programming (second edition).

• Before an attempt can be made to automate analysis of component systems,
formal de�nitions of component must be proposed. Such de�nitions are
beginning to appear in the literature.

• Component compatibility is required for reusability and substitutibility in
software development and maintenance.

3

Petri Net Interface Model

• It is assumed that internal behavioural semantics of components are unim-
portant and the behaviour can be described as a set of service sequences
(or a set of sequences of interface operations).

• This behaviour is represented by a (cyclic) labelled Petri net:

Mi = (Pi, Ti, Ai, Si, `i,mi), `i : Ti → Si, mi : Pi → { 0, 1, . . . }.

Different services are represented by different labels from the set Si.

• Component interactions occur between requester interfaces (r-interfaces)
and provider interfaces (p-interfaces). The same component can have sev-
eral r-interfaces and several p-interfaces.

b c

d
a

4

Petri Net Model � Interface Languages

• The behaviour of an interface Mi is described by a protocol or language
which is the set of all (initial) �ring sequences, F(Mi).

• A single �ring sequence σ from this set is:

σ = ti1ti2 . . . tik ⇔ (∀ 0 < j ≤ k : tij ∈ E(mij−1
) ∧ mij−1

tij→ mij) ∧ mi0 = mi,

where E(m) is the set of transitions enabled by the marking m.

• The language ofMi, denoted by L(Mi), is de�ned as:

L(Mi) = { `(σ) | σ ∈ F(Mi) ∧ `(σ) is a complete sequence of operations },

where `(ti1 . . . tik) = `(ti1) . . . `(tik) and a complete sequence of operations
represents a session of requester/provider interactions (i.e., a cycle of an
interface model).

5

Interface Composition

An r-interface Mi = (Pi, Ti, Ai, Si, `i,mi) composed with a p-interface
Mj = (Pj, Tj, Aj, Sj, `j,mj) creates a new netMij = (Pij, Tij, Aij, Si, `ij,mij),
provided that Si ⊆ Sj and where:
Pij = Pi ∪ Pj ∪ { pti

: ti ∈ T̂i } ∪ { p′tj
, p′′tj

: tj ∈ T̂j },

where T̂i = { t ∈ Ti : `i(t) 6= ε }, T̂j = { t ∈ Tj : `j(t) 6= ε },

Tij = Ti ∪ Tj − T̂i ∪ { t′i, t
′′
i : ti ∈ T̂i },

Aij = Ai ∪Aj − Pi × T̂i − T̂i × Pi ∪
{ (pi, t

′
i), (t

′
i, pti

), (pti
, t′′i), (t′′i , pk), (t′i, p

′
tj
), (p′tj

, tj), (tj, p′′tj
), (p′′tj

, t′′i) :

ti ∈ T̂i ∧ tj ∈ T̂j ∧ `i(ti) = `j(tj) ∧ (pi, ti) ∈ Ai ∧ (ti, pk) ∈ Ai },

∀t ∈ Tij : `ij(t) =

 `i(t), if t ∈ Ti,
`j(t), if t ∈ Tj,
ε, otherwise;

∀p ∈ Pij : mij(p) =

 mi(p), if p ∈ Pi,
mj(p), if p ∈ Pj,
0, otherwise.

6

Interface Composition (cont'd)

A composition, for a single interface operation, can be illustrated as fol-
lows:

a

ti

pkpi

a

tj

ptipi pk

t′

i t′′

i

a

tj

AfterBefore

Requester

.

.

.

Provider

p′

tj
p′′

tj

7

Component Compatibility

• In the composed net, all (nontrivially) labelled transitions are shared by
both interfaces.

• Any string generated by the resulting composition can also be generated by
each interface:

The language of the composition of two interfaces with the same al-
phabet S, an r-interface Mi and a p-interface Mj, Mi �Mj, is the
intersection of L(Mi) and L(Mj), L(Mi �Mj) = L(Mi) ∩ L(Mj).

• The compatibility of two components can be checked by detecting dead-
locks in the composed net:

Two interfaces with the same alphabet S, an r-interface Mi and a
p-interface Mj are incompatible iff the composition Mij = Mi �Mj

contains a deadlock.

8

Example 1

Consider database client and server components. The server (provider)
supports an open operation (a), followed by any number of read/write op-
erations in any order (b|c)∗ followed by a close operation (d). The interface
language of the client (requester) is a subset of this language.

cb

a d

Requester

Provider

b c

a d

9

Example 1 (cont'd)

Provider language LP = (a(b|c)∗d)∗; requester language LR = (a(bc)∗d)∗

Note: LR ⊆ LP , so LR ∩ LP = LR.

Mij =Mi �Mj is deadlock-free ⇒Mi is compatible withMj.

cb

a d

Requester

Provider

10

Example 1 (cont'd)

Swapping the provider and requester in the previous example, so LP =
(a(bc)∗d)∗ and LR = (a(b|c)∗d)∗, results in composition that exhibits a dead-
lock as shown below:

cb

a d

Requester

Provider

LR 6⊆ LP ,Mi is incompatible withMj.

11

Example 2

Context free languages (e.g. nested transactions on a database).
Before composition:

Requester

Provider

a d

a

b c

b c
d

12

Example 2 (cont'd)

Context free languages (e.g. nested transactions on a database).
After composition:

Requester

Provider

a dcb

13

Conclusions and Future work

• Static and dynamic component aspects must be understood in order to
determine compatibility.

• Compatibility can be checked by representing the interface behaviours as
Petri nets and then composing them.

– If the resulting net exhibits deadlock, then the components are not com-
patible.

– Deadlock detection � structural techniques can be applied given the
presence of cyclic subnets.

• Hierarchical representations of component interfaces in complex software
architectures follows the same approach.

• Dynamic recon�guration/collaboration between components may be possi-
ble. (Self assembling software?)

14

