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Complexity in Software Engineering

• Construction of large-scale software projects is becoming increasingly dif-
�cult as architectures become more sophisticated.

• To combat complexity, there has been a natural, evolutionary trend from
low-level constructs to higher-level abstractions in the software engineering
process:

– structured programming
– object-oriented programming
– aspect-oriented programming
– architecture description languages

• In recent years, component-based software engineering has been proposed
as a means of mitigating the complexities associated with construction of
large software architectures.
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Component Background

• Informal de�nitions of components are numerous. For example:

– �An independently deliverable piece of functionality providing access
to its services through interfaces.�

Alan W. Brown (2001) An Overview of Components and Component-Based Development.

– �A software component is a unit of composition with contractually
speci�ed interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to
composition by third parties.�

Clemens Szyperski (2002) Component Software : Beyond Object-Oriented Programming (second edition).

• Before an attempt can be made to automate analysis of component systems,
formal de�nitions of component must be proposed. Such de�nitions are
beginning to appear in the literature.

• Component compatibility is required for reusability and substitutibility in
software development and maintenance.

3



Petri Net Interface Model

• It is assumed that internal behavioural semantics of components are unim-
portant and the behaviour can be described as a set of service sequences
(or a set of sequences of interface operations).

• This behaviour is represented by a (cyclic) labelled Petri net:

Mi = (Pi, Ti, Ai, Si, `i,mi), `i : Ti → Si, mi : Pi → { 0, 1, . . . }.

Different services are represented by different labels from the set Si.

• Component interactions occur between requester interfaces (r-interfaces)
and provider interfaces (p-interfaces). The same component can have sev-
eral r-interfaces and several p-interfaces.

b c

d
a
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Petri Net Model � Interface Languages

• The behaviour of an interface Mi is described by a protocol or language
which is the set of all (initial) �ring sequences, F(Mi).

• A single �ring sequence σ from this set is:

σ = ti1ti2 . . . tik ⇔ (∀ 0 < j ≤ k : tij ∈ E(mij−1
) ∧ mij−1

tij→ mij) ∧ mi0 = mi,

where E(m) is the set of transitions enabled by the marking m.

• The language ofMi, denoted by L(Mi), is de�ned as:

L(Mi) = { `(σ) | σ ∈ F(Mi) ∧ `(σ) is a complete sequence of operations },

where `(ti1 . . . tik) = `(ti1) . . . `(tik) and a complete sequence of operations
represents a session of requester/provider interactions (i.e., a cycle of an
interface model).
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Interface Composition

An r-interface Mi = (Pi, Ti, Ai, Si, `i,mi) composed with a p-interface
Mj = (Pj, Tj, Aj, Sj, `j,mj) creates a new netMij = (Pij, Tij, Aij, Si, `ij,mij),
provided that Si ⊆ Sj and where:
Pij = Pi ∪ Pj ∪ { pti

: ti ∈ T̂i } ∪ { p′tj
, p′′tj

: tj ∈ T̂j },

where T̂i = { t ∈ Ti : `i(t) 6= ε }, T̂j = { t ∈ Tj : `j(t) 6= ε },

Tij = Ti ∪ Tj − T̂i ∪ { t′i, t
′′
i : ti ∈ T̂i },

Aij = Ai ∪Aj − Pi × T̂i − T̂i × Pi ∪
{ (pi, t

′
i), (t

′
i, pti

), (pti
, t′′i ), (t′′i , pk), (t′i, p

′
tj
), (p′tj

, tj), (tj, p′′tj
), (p′′tj

, t′′i ) :

ti ∈ T̂i ∧ tj ∈ T̂j ∧ `i(ti) = `j(tj) ∧ (pi, ti) ∈ Ai ∧ (ti, pk) ∈ Ai },

∀t ∈ Tij : `ij(t) =

 `i(t), if t ∈ Ti,
`j(t), if t ∈ Tj,
ε, otherwise;

∀p ∈ Pij : mij(p) =

 mi(p), if p ∈ Pi,
mj(p), if p ∈ Pj,
0, otherwise.
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Interface Composition (cont'd)

A composition, for a single interface operation, can be illustrated as fol-
lows:
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Component Compatibility

• In the composed net, all (nontrivially) labelled transitions are shared by
both interfaces.

• Any string generated by the resulting composition can also be generated by
each interface:

The language of the composition of two interfaces with the same al-
phabet S, an r-interface Mi and a p-interface Mj, Mi �Mj, is the
intersection of L(Mi) and L(Mj), L(Mi �Mj) = L(Mi) ∩ L(Mj).

• The compatibility of two components can be checked by detecting dead-
locks in the composed net:

Two interfaces with the same alphabet S, an r-interface Mi and a
p-interface Mj are incompatible iff the composition Mij = Mi �Mj

contains a deadlock.
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Example 1

Consider database client and server components. The server (provider)
supports an open operation (a), followed by any number of read/write op-
erations in any order (b|c)∗ followed by a close operation (d). The interface
language of the client (requester) is a subset of this language.

cb

a d
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Provider

b c

a d
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Example 1 (cont'd)

Provider language LP = (a(b|c)∗d)∗; requester language LR = (a(bc)∗d)∗

Note: LR ⊆ LP , so LR ∩ LP = LR.

Mij =Mi �Mj is deadlock-free ⇒Mi is compatible withMj.

cb

a d

Requester

Provider
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Example 1 (cont'd)

Swapping the provider and requester in the previous example, so LP =
(a(bc)∗d)∗ and LR = (a(b|c)∗d)∗, results in composition that exhibits a dead-
lock as shown below:

cb

a d

Requester

Provider

LR 6⊆ LP ,Mi is incompatible withMj.
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Example 2

Context free languages (e.g. nested transactions on a database).
Before composition:

Requester

Provider
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a
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Example 2 (cont'd)

Context free languages (e.g. nested transactions on a database).
After composition:

Requester

Provider

a dcb
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Conclusions and Future work

• Static and dynamic component aspects must be understood in order to
determine compatibility.

• Compatibility can be checked by representing the interface behaviours as
Petri nets and then composing them.

– If the resulting net exhibits deadlock, then the components are not com-
patible.

– Deadlock detection � structural techniques can be applied given the
presence of cyclic subnets.

• Hierarchical representations of component interfaces in complex software
architectures follows the same approach.

• Dynamic recon�guration/collaboration between components may be possi-
ble. (Self assembling software?)
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