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INTRODUCTION

Bacteria must be able to detect rapid changes in their environment and to adapt
their metabolism to external fluctuations. They monitor their surroundings with mem-
brane-bound and intra-cellular sensors. The regulatory mechanisms of bacteria can
be seen as a model for the design of robust control systems based on an artificial
chemistry. The capability to process information which is needed to keep autonomous
agents surviving in unknown environments is discussed.

Biological cells can be seen formally as information processing systems of high
complexity [Lengeler, 1996]. They react to a large number of stimuli which are perceived
by sensors. These mostly chemical stimuli are converted by two-component-systems
into signals that are (i) collected, (ii) computed, (iii) integrated and (iv) transmitted
through signal transduction pathways. Biochemical changes of proteins, protein-protein
interactions and facilitated diffusion along ordered cell structures play a decisive role.

Cellular signal-transmitting systems are hierarchical and often require communi-
cation between hundreds of proteins. Membrane-bound two-component systems (see
Fig. 1) provide the connection between the sensory domain and an attractant or repel-
lant. This domain is connected via helical transmembrane protein structures with the
requlator domain. Conformational changes in the sensory domain at the external surface
induce changes in the relative positioning of the helical membrane-cytosol interface. For
instance, binding of a ligand causes a change of the electrostatic density and hence a
rotation that increases the distance between charged groups [Stock and Surette, 1996,
Lengeler, 1995].

This reaction is transient, i.e. it ends even though the stimulus might continue.
Formally, this adaption is achieved through release of a slow feedback reaction which
inhibits the signal. Different pathways interlace and so a hierarchical cellular net-
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Figure 1. Ligand binding causes the modulation of the electrostatic
properties of the helices and therefore the transition between active
and inactive state.

work emerges with a high capacity to store information [Lengeler, 1995, Conrad, 1992].
The computational functions in such biochemical reaction networks have been anal-
ysed by [Arkin and Ross, 1994, Bray and Lay, 1994, Bray and Bourret, 1995] and are
supposed to function akin to biochemical neuronal networks [Hjelmfelt et al., 1991,
Hellingwerf et al., 1995, Okamoto et al., 1995].

Through encapsulation of correlated functions into compartments and the use
of superimposed regulating mechanisms (see Fig. 2) the cell reduces the vast flow
of information to a communication between a few clearly arranged functional blocks
[Darnell et al., 1993, Maynard Smith and Szathmary, 1995].

The signal processing system of a cell is very robust in its dependence upon the
observation of central metabolites and, on the other hand, on the hierarchical division
into functional blocks. Therefore it can act as a model for the construction of robust,
highly parallel and distributed control systems.

CELLS AS INFORMATION PROCESSING SYSTEMS
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Figure 2. The metabolic and the regulatory network of a cell.



The metabolism of a cell can be divided into two levels: (i) the metabolic network,
where all bio-chemical reactions occur and (ii) the regulatory network which controls
the velocity of the reactions and supervises the transduction pathways (see Fig. 2).

All reaction pathways and all regulatory elements together form a kind of highly
connected molecular network. Each element of this network is a collector of different
stimuli (see Fig. 3).
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Figure 3. A node in the molecular network of the cell. Stimuli are collected and transmitted
depending on the level of adaption to the specific stimulus. This node can be seen as a more
general two-component system.

Signals are transmitted depending on the actual state of the adaptor. They are
reduced to binary information: by molecules appearing in only two states: activated
or inactivated. Usually these differ only in the absence or presence of a single atom
or group at the molecular level. The regulatory network decides through slow or fast
feedback or forward reactions which of the connections of the molecular network are
activated or inhibited [Lengeler, 1995, Stanier et al., 1986].

One very interesting information processing system of a bacterium controls its
movement. Thus, the rest of this section is devoted to a more detailed discussion of the
information flow in the chemotaxis system. Chemotazis is the ability of a bacterium to
follow concentration gradients by modulation of tumbling frequency. (Fig. 4).
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Figure 4. Information flow in the chemotaxis system of FEscherichia Coli.



In FE. coli there are six cytoplasmic transduction proteins: CheA, CheB, CheR,
CheW, CheY and CheZ [Stock and Surette, 1996]. The increase of CheA, for example,
indicates the presence of a carbon source (glucose, fructose, etc.). CheA phosphorylates
CheY which binds to the switch complex of the flagellar motor and CheB which closes
the feedback loop to reset the receptor. The binding of CheY causes clockwise rotation
or, to be more specific, it interrupts counterclockwise rotation. Clockwise rotation of
the majority of the flagellar motors causes a re-orientation (tumble). In this way, the
frequency of tumbling is influenced by the concentration of the carbon source.

The cell thus executes a biased random walk, caused by concentration gradi-
ents, towards a more favourable environment. It is assumed [Stock and Surette, 1996,
Boos, 1977, Alt, 1994] that chemotactic responses are mediated by a temporal, rather
than by a spatial, sensing mechanism, for the following reasons: (i) the length of a
bacterium is too small and it moves too quickly to allow for spatial sensing. (ii) Bac-
teria even respond to sudden changes in concentrations when the concentration is
spatially homogeneous. The decision whether to change the movement direction or
not depends on the state of some key-metabolites and constitutes an inherent mem-
ory of the cell. For a detailed description of bacterial chemotaxis see for example

[Bray et al., 1993, Jones and Aizawa, 1991, Lengeler, 1995, Stock and Surette, 1996].

A SPATIAL MODEL OF THE CELL

Information processing in living systems means transduction of substances or
molecular interactions. The reception of a stimulus causes the transmission of sub-
stances to inner regions of the cell. They arrive either unchanged via diffusion along
ordered cell structures or through a cascade of sequential biochemical reactions. Thus,
a changing concentration level of X; can indicate the reception of Y;. Since chemical
reactions take place at very high velocity the delay between encountering a specific
substance and a significant change in concentration of the signalling substance is small.
Response to an actual stimulus is very fast.

Compartments

Although a procaryotic bacterium appears to lack a cytoskeletton it must not be
seen as a “bag full of enzymes” but as a highly ordered system of interacting molecules
which are interconnected and connected to the inner membrane.

A model of spatially continuously distributed substances can be based on non-
linear partial differential equations. Replacing the spatial derivatives with finite differ-
ences divides the system into subsystems (see Fig. 5) which can be treated as homo-
geneous regions and modelled by a system of coupled ordinary differential equations
[Jetschke, 1989]. These subsystems are called compartments. The state of a compart-
ment is represented by a concentration vector. A realistic model of a complex bio-
chemical system requires 102 - 10° compartments. In order to keep the simulation of
the system tractable the number of compartments should be reduced. The first experi-
ments with a real robot are performed with only one compartment. A model system of
this kind can be called a (formal, algorithmic) reactor.

Metadynamics

Describing the dynamics of the reactor leads to a system of coupled differential
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Figure 5. Spatial model of the cell. Homogeneous subsystems (com-
partments) are connected through diffusion flux. For further details see
text.

equations. In order to avoid the number of reactions becoming infinite there must be a
focusing on the most relevant ones. A real reactor only contains a finite number of sub-
stances and so a possible reaction can only take place when at least one single molecule
is inside the reactor. Simulating the dynamics with differential equations, however, as-
sumes a continuous model even with infinitesimal concentrations of substances.

Since a reactor in reality is not continuous but discrete there must be a concentra-
tion threshold representing the presence of a single molecule above which the substance
is treated as a reactant. If its concentration be lower, it should not participate in the
reactor’s dynamics. Thus the system has two different time scales: a fast time scale of
the concentration changes and a slower time scale for changing the number of partic-
ipating substances. This change of the ODE system over time is called metadynamics
[Bagley and Farmer, 1992]. The metadynamics is additionally influenced by diffusion
fluxes from other compartments.

ARTIFICIAL REACTION SYSTEMS
Artificial Chemistry

In a real chemistry the kinetic parameters and efficiencies depend on thermody-
namics, quantum mechanics and chemical composition of the molecules. For that rea-
son it is impossible to calculate them exactly in practice. To circumvent the trouble-
some computation of approximations one can formulate an artificial chemistry (AC)
[Bagley and Farmer, 1992, Fontana, 1992, Fontana, 1994]. An AC is not able to repro-
duce all properties of real chemistry but it can produce complex behaviour which can
be studied instead. By changing the rules different chemistries can be instantiated and,
adding layers of more realistic behaviours, it is possible to reproduce properties of the
"real” chemistry.

A straightforward way for building a metabolic controller would be, first, to define
an arbitrary AC and then use this chemistry to create a controller composed of certain
substances. In the following sections we will define two artificial chemistries to show
how the abilities of a metabolic controller are depending on its underlying AC. A more
radical approach would be to set up a system with the metabolism emerging from the
reactions [Banzhaf, 1994].



Example A: Artificial Polymer Chemistry

We begin our discussion with an artificial polymer chemistry which is an AC where
only polymerisations reactions exists [Bagley and Farmer, 1992]. A substance is repre-
sented by a string s = (s',s%,...5") € A" composed of characters from the alphabet
A. The reaction mechanism is simply defined as the concatenation:

1.2 n; 1 .2 niy SR 12 ni 1 2 n;
(s, 8%, ...8/" )+ (sj,s]-,...sj )= (s;,s5,...s, S ) (1)
The reaction may be catalyzed by a string s, with catalytic efficiency v. The dynamic
behaviour of the polymer chemistry should be demonstrated by the example shown in
figure 6 with the alphabet A = A, B. The catalytic constants k! are set to v = 10.

Polymerisation is ten times faster than de-polymerisation (k; = 1.0, k_; = 0.1).
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Figure 6. Example A: Reaction network for the polymer chemistry.
The monomers A and B (food set) will be used as inputs. Dotted
arrows indicate catalytic activity.

Details of the reaction mechanism and its system of ordinary differential equations
(ODE) can be found in the Appendix, part A. The continuous influx flow ®(A) and
®(B) of the monomers A and B is defined as input. Fig. 7 shows the steady-state
input-output relation of the example reaction network.

Example B: Artificial Enyzme-Substrate-Chemistry

The reaction network in Fig. 8 is an example based on enzyme-substrate ki-
netics. Reaction systems of this kind are referred to as chemical neuronal networks
[Hjelmfelt et al., 1991, Okamoto et al., 1995]. The input is represented by the sub-
stances C' and D, the output by 7. The substances marked by ”*” are held at a constant
concentration level. The detailed reaction mechanism and its corresponding ODE model
can be found in the Appendix, part B. Fig. 9 shows the steady-state concentrations of
the output species T' and several internal substances as a function of input C' and D.

Comparison

The polymer chemistry shows a very smooth input-output surface in contrast to
the sharp surface of the enzyme-substrate example. The smooth surface insinuates that
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Figure 8. Example B: Reaction network based on enzyme-substrate kinetics. C' and D are

99 5k 9

input species. T is the output. Substances marked by are held constant.

input information is not processed. The state space which can be reached for different
inputs is very large. The surface in state space can not be intuitively divided into
different regions with different meanings. In the enzyme-substrate example the quasi-
continous input information is condensed by mapping it on two regions in state space
which can be clearly separated (Fig. 9). Given some concentrations of possible output-
substances the input vector can be much more easily reconstructed than in example B.
The robustness of the classification can be demonstrated by analysing the information
passed from reaction network to reaction network. If these networks are considered
to be identical the development of a small error in the first classification is shown
in Fig. 10. Transfer functions like a) will reduce the classification to a simple all-or-
nothing. A correct classification is achieved, even with a disturbed input signal. The
course of concentrations in Fig. 8 is similar to a) and thus small fluctuations will be
reduced. If the transfer function is of type b) or ¢) the error will be amplified and the
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Figure 9. Example B: Steady-state input-output relation of the enzyme-substrate chemistry
example (Fig. 8) which shows the function of an logic AND gate.
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Figure 10. Amplification and reduction of a small error during repeated iteration.

original classification can not be restored. Some substances in Fig. 7 are of type b)
or ¢) and thus the classification on incoming information is not robust. Additionally,
the total information conservation of the polymer chemistry may lead to information
destabilisation when the information should be stored in reaction loops, processed or
transmitted. Small fluctuations will be amplified resulting in a quick loss of information.



THE ROBOT CONTROLLER

We shall now discuss the application of the above model to robot control. In order
to make use of the computational capabilities of a metabolism it will be necessary to
connect it to the environment. If it were simulated without any additional fluxes (e.g.
sensor information) the system would run through a transient phase until it finally
reached a steady-state.

If we connect the model of our reactor with the infrared sensors of a robot and
the motor control with the concentration level of some metabolites we shall be able to
use the emerging computational capabilities of the metabolism to control the robot’s
behaviour. The metabolism is driven away from equilibrium through the sensor infor-
mation flux, so that all concentrations are influenced by the surroundings of the robot.
The sensors are connected with different parts of the metabolism. A change of one sen-
sor value may increase or decrease the concentration of a certain species. The resulting
dynamics causes a representation of the environment inside the robot’s metabolism.
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Figure 11. The robot’s metabolism based on enzyme-substrate kinetics. L; are the sensor
substances emitted by the ambient light sensors. D; are emitted by the distance sensors. Wheel
motors are controlled by the substances ML and MR.

In Fig. 11 a schematic metabolism is shown based on an enzyme-substrate kinetics
which has been used to control a real robot. The robot has 8 proximity and 8 ambient
light sensors. Two basic behaviours are integrated into the metabolism: obstacle avoid-
ance and light seeking. The part of the reaction network mainly concerned with the
obstacle avoidance is processing the substances emitted by the proximity sensors. The



light seeking behaviour gets its input from the ambient light sensors.

Experiments (Fig. 12) show, that the metabolism is able to control the robot in the
desired way. It is also able to perform behaviour selection in critical situations where
obstacle avoidance has to suppress light seeking. Furthermore, the controller is shown
to be robust against disturbance of the reactor, which has been simulated by inserting
small random amounts of substances. Figure 12 shows an example of an experiment in
an artificial environment.

Light

Figure 12. Example run of the robot. A typical trajectory of the
robot’s movement is shown in the environment. The robot tries to
stay in the lighted area while simultaneously avoiding obstacles.

CONCLUDING REMARKS

The behavior of the robot emerges through chemical reactions between metabolites.
It is possible for an autonomous robot to get information about its environment by
sensors emitting substances into the robot’s metabolism. The control system is parallel
and distributed and the ability of navigation emerges only through computation with
catalytic reactions [Banzhaf et al., 1996].

The increase and decrease of key-metabolites allows to achieve primitive goals such
as obstacle avoidance or luminance gradient following (phototazis). By adding differ-
ent sensors it would be possible to solve more complicated tasks by stimulus-specific
chemical reactions and alarmones. The current focus in our work lies in developing an
algorithm which automatically evolves the metabolism to get a better stimulus-response
mechanism, but this work is still in progress.
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APPENDIX

A: ODE System for Polymer Chemistry

The reaction mechanism for Example A:

A+ B
AB+ AB
ABAB + B

A+ ABABB

A+ B

AB+ AB

ABAB + B

A+ ABABB

1

T=

1E

P
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AB,
ABAB,
ABABB,

AABABB,

AB,

ABAB,

ABABB,

AABABB,

W = kl[A][B] — k_l[AB]
Wy = kQ[AB][AB] — k_Q[ABAB]
w3 = kg[ABAB][B] — k_g[ABABB]

wi = ka[A[ABABB] — k_s[AABABB]

ws = ks v[A][B][B] — k_s v[AB][B]

we = ke v [AB][AB|[ABAB] — k_g v [ABAB|[ABAB]
wr = kr V[ABAB][B[A] — k_7 v[ABABB][A]

ws = ks v [A][ABABBI[AB] — k_s V[AABABB][AB]

Table 1. Kinetic rate constants of the polymer chemistry.

Resulting ODE system:

[AABABB]
dt

[ABAB]

[ABABB]

parameter | value

k; 1.0 Vi
k_; 0.1 Yz
v 10

4]
dt
[B]
dt
[AB]
dt

dt

dt

—wy — w4 —ws —wg + pa — [A]

Qe Qls

—w; —w3 —ws —wr + ¢ — [B]
bl
C

@
wg—w3—|—w6—w7—[ABAB]5

w3 —wyq + w7 — wg — [ABABB] )

w1 — Wy —|—w5 — Wg — [A4B]

Qle

w4+a@—[AABABB]%, 2)

with the size C of the reactor. The influx ¢ is defined as ¢ = ®(A) + ¢(B).



B: ODE System for Enzyme-Substrate Chemistry

The reaction mechanism for Example B:

I+ C

1

X1+C, w =k [C[I19 - k_y[C][X]
X14+B = X244,  wy= ko [X1][B] - k_o[A][X2*]
X3+A = X4+ B,  wy=ks[X3][A] - k_s[B][X4%]

X3 12*7 Wy = k4[)(3] - k_4[12*]

1

Table 2. Kinetic rate constants of the enzyme-substrate mechanism.

parameter | value || parameter | value
ki, ks 70 k_1,k_5 1
ko, ke 5104 | kg kg |1
ks, k7 5-10% || k_3,k_7 1
kg, ks 1 ki g ks | 100
Resulting ODE system:
d[X1]
— = W —Ww
7 1 2
d[X3]
— = w3 —Ww
7 3 4
a4 (8]
=7 — 3
di di w2 s, (3)
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