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1. Introduction 

 
The development of an entire organism from a single cell is one of the most profound and awe 
inspiring phenomena in the whole of the natural world. The complexity of living systems itself 
dwarfs anything that man has produced. This is all the more the case for the processes that lead to 
these intricate systems. In each phase of the development of a multi-cellular being, this living system 
has to survive, whether stand-alone or supported by various structures and processes provided by 
other living systems. Organisms construct themselves, out of humble single-celled beginnings, riding 
waves of interaction between the information residing in their genomes – inherited from the 
evolutionary past of their species via their progenitors – and the resources of their environment.  
 
Permanent renewal and self-repair are natural extrapolations of developmental recipes, as is 
adaptation to different environmental conditions. Multi-cellular organisms consist of a huge amount 
of cells, the atoms of life, modular structures used to perform all the functions of a body. It is 
estimated that there are of the order of 1013 cells in the human body. Some of them are dying and 
being grown again constantly, and it seems miraculous that an organism manages to remain stable.  
The developmental process supports an amazing variety of individual organisms of a species, yet 
these vast colonies of cells have the same basic body plan.  
 
The contrast cannot be stronger to human-made systems and machines. The manner in which living 
systems are built is the antithesis of the way that we construct things. Functionally invalid until the 
very last part has been inserted, machines await construction from outside agents who follow plans 
the machines themselves have no clue about. Thrown into the world of action, machines are usually 
functioning in a very narrow band of environmental conditions, quickly wearing down if those 
conditions are not favourable. Being unable to repair themselves, they stop functioning once the 
weakest part breaks. This is true also for electronic systems and software. Transistors, the non-linear 
elements of our computer world, have a defined working point. Environmental conditions leading to 
a deviation from this working point will quickly destroy electronic systems. Similarly, input to 
software systems that has not been thought about beforehand and prepared for, will usually throw a 
software system out of order or cause an exception. Thus, many of the simple things that living 
organisms do naturally, are fiendishly difficult for a computer program to accomplish.  

 
Nowadays it is commonplace for computer chips to be built on a sub-micron (<10-6 metres in size) 
scale. As we try to miniaturise electronic circuits further we start to meet problems that arise purely 
for reasons of size. Firstly, the wires get in the way and their density becomes unmanageable, 
secondly, we find ourselves facing immense problems in verifying that the circuits work according to 
their specification. Imagine building circuits on a molecular scale, where we might have to specify 
the locations of the order of 1020 molecules. How will we get them to the correct position? The real 



difficulty associated with extreme miniaturisation is the problem of getting information from the 
world we live into the tiny world of molecules.  
 
Living systems have used an entirely different strategy: The information is in the smallest unit to 
begin with! Cells can be thought of as incredibly sophisticated robots that eat food, interact with the 
intra-cellular environment and build copies of themselves. The problem that researchers in 
developmental biology face is to try to understand how cells can accomplish these feats. If we want 
to learn from the natural example, an important question arises: How can we eliminate the many 
things that are incidental to the development process in biology from those that are fundamental? 
This is where computer scientists may be able to help. Already, a number of attempts have been made 
by computer scientists to create models inspired by biological developmental. There are two main 
directions to the effort in this field. Some researchers are trying to model (as accurate as possible) 
biological processes to help developmental biologists understand how development works. Others are 
exploring the degree to which developmental approaches may help us solve certain problems in 
computer science. There is no doubt that both fields of work will ultimately be of great benefit to 
humanity. 
 
This chapter is about our attempts to explore the capabilities of a highly idealised developmental 
computer algorithm. Although we hope that the ideas discussed here may be of benefit to 
developmental biologists (at least on a conceptual level) we expect our work to be of more interest to 
computer scientists. We hope to ask some of the questions that concern developmental biologists, but 
ask them of developmental computer algorithms. Two of the questions we address particularly are the 
following: (i)  How can we define programs that run inside cells that construct complex structures, 
when each cell runs an identical program? and (2) How can we obtain structures that are self-
regulating (e.g. once mature, remain at a fixed size)?  
 
The main original contributions of this chapter lie in sections 3-6. In section 2 we review briefly 
various attempts at modelling developmental phenomena on computers and at computer algorithms 
that are inspired by, or attempt to utilise, developmental ideas. Already these subjects are sufficiently 
advanced that we cannot hope, in the limited space of this chapter, to do justice to their breadth and 
subtlety. In section 3 we describe a form of Genetic Programming that has been recently created and 
applied to developmental algorithms. We make no claims as to its particular suitability to this 
problem, although it has been found to be effective on a number of problems. In section 4 we apply it 
to the problem of growing computer programs in the form of directed graphs. In section 5 we apply it 
in a very different way to the problem of growing two-dimensional arrays of 'cells'. Much of the work 
reported here is new and therefore by definition immature, however we feel that it has produced some 
surprising and even beautiful results.  
 
 
2. Understanding and utilising ideas from biological development with computers 
 
 
2.1 Pattern formation and morphogenesis 
 
In 1952 Turing discovered that spatial concentration patterns can be formed if two substances with 
different diffusion rates react with each other [Turing52]. This was surprising as normally diffusion is 
thought of as a smoothing-out process. Since that time there has been considerable interest in types of 
reaction diffusion systems as a way of understanding pattern formation in living systems [Othmer, 
Maini and Murray92, Meinhardt98]. The idea is that morphogenesis happens as a result of cells 
reading and responding to changes of chemical gradients and establishing body plans and other 



patterning accordingly. One of the primary motivations behind this idea is that one must account for 
the phenomenon of cells acquiring positional information so that they differentiate and move in the 
right way to construct the whole organism [Wolpert 1981, 1998]. The mechanochemical models of 
morphogenesis try to take into account the mechanical properties of cells and biological tissue into 
the process of morphogenesis, so that pattern formation and morphogenesis take place together 
[Murray 1989]. Other theories stress the importance of chemotaxis and have been very successful in 
describing the life cycle of organisms such as the slime mould Dictyostelium discoideum [Kessin 
2001]. A very interesting and novel model of D. discoideum was developed by Savill and Hogeweg 
who used a three-dimensional hybrid cellular automaton together with a mathematical model of the 
cAMP signalling system [Savill and Hogeweg 1997]. They showed that with just three processes: (i) 
production of camp, (ii) chemotaxis to camp, and (iii) cellular adhesion they could obtain most of the 
behaviour of real D. discoideum amoebae (e.g., streaming, mound formation, sorting into two cell 
types, falling over and crawling away) without changing model parameters. Furusawa and Kaneko 
have also conducted some very interesting work on the emergence of multi-cellular organisms 
[Furusawa and Kaneko 1998]. 
 
Nowadays new 'morphogens', i.e. substances that govern and direct the development of 
morphological features, are being discovered all the time. We are learning more about the genes that 
are responsible for the production of these morphogens and their receptors. Bonner likens the process 
to one of watching an ever-increasing telephone book enlarge and hopes for simple explanations that 
transcend the minute details (such as reaction-diffusion systems) [Bonner 2000].  

 
2.2 Lindenmeyer systems and graph re-writing 
 
Lindenmeyer systems (L-systems) were introduced by Aristid Lindenmeyer [Lindenmeyer68]. An L-
system is a so-called rewriting system in which symbols are the basic elements. The action of an L-
system begins with a start symbol (e.g. A), that is called an axiom, and employs rules that map (“re-
write”) the symbols already present to a finite set of symbols (e.g. A, B, C, D). At each iteration of 
the re-writing process every symbol is re-written according to the applicable rules in parallel. For 
example: 
 

Axiom : A 
 
Rules: 
 
A → AB 
B → BC 
C → D 
D → A 
 

Figure 2.1:  L-system with four iterations 
 
L-systems may have context dependency so that symbols will only be replaced if specific other 
symbol precede (or succeed) a given symbol. If the symbols are interpreted as controlling a robot that 
leaves an ink trail it is possible to draw structures that look like plants with just a few iterations 
[Prunsinkiewicz  and Lindenmeyer1990]. 
 
Boers and Kuiper have adapted L-systems to develop the architecture of artificial neural networks 
(ANNs), notably controlling the numbers of neurons and their connections [Boers and Kuiper 1992]. 
They used an evolutionary algorithm (see section 3) to evolve the rules of an L-system that, when 

    Iteration 0:                 A 
    Iteration 1:                 AB  
    Iteration 2:                 ABBC     
    Iteration 3:                 ABBCBCD 
    Iteration 4:                 ABBCBCDBCDA 
 



applied to an axiom, generated feed-forward neural networks. A method for training neural networks 
called backpropagation was used for learning and the accuracy of the neural networks on test data 
was used to evaluate the quality of the network. This quality was returned as a number to the 
evolutionary algorithm (the fitness measure). Boers and Kuiper claimed that although their results 
were preliminary their method was able to evolve more modular neural networks that performed 
better than networks with a predefined structure.  
 
As noted by Boers and Kuiper, Kitano had developed another method for evolving the architecture of 
an artificial neural network [Kitano 1990] using a matrix re-writing system that manipulated 
adjacency matrices. Although Kitano claimed that his method produced superior results to direct 
methods (i.e. a fixed architecture, directly encoded and evolved), it was later shown in a more careful 
study that the two approaches were of equal quality [Siddiqi and Lucas 1998].  
 
Gruau devised a graph re-writing method called cellular encoding [Gruau 94].  Cellular encoding is a 
language for local graph transformations that controls the division of cells which grow into artificial 
neural networks. The cells (which we can identify as nodes in the ANN) store connection strengths 
(weights) and a threshold value. The cells also store a grammar tree that defines the graph re-writing 
rules and a register that defines the start position in the grammar tree. When cells divide the daughter 
cells are identical to their parent. The grammar tree was evolved using an evolutionary algorithm. 
This method was shown to be effective at optimising both the architecture and weights at the same 
time, and achieving as good performance with direct encoding required the testing of many candidate 
architectures [Gruau, Whitley, and Pyeatt 1996]. The authors found that cellular encoding could find 
small architectures whose structure and complexity fit the specificity of the problem. Others have 
successfully employed this approach in the evolution of recurrent neural networks that control the 
behaviour of simulated insects [Kodjabachian, and Meyer 1998].  Koza has successfully employed a 
modified cellular encoding technique to allow the evolution of programs that produce human-
competitive designs for electric circuits and other engineering problems [Koza 1999]. 
 
Hornby and Pollack have also evolved context free L-systems to define three dimensional objects 
(table designs) [Hornby and Pollack 2001]. They found that their generative system could produce 
designs with higher fitness and faster than direct methods. 
 
 
2.3 Simulated proteins, regulatory networks, cell metabolisms and axon growth 

 
Fleischer and Barr created a sophisticated multi-cellular developmental test bed and included realistic 
models of chemical diffusion, cell collision, adhesion and recognition [Fleischer and Barr 1992]. 
Their purpose was to investigate cell pattern generation. They noted that the design of an artificial 
genotype which develops into a specific pattern is very difficult. They also noted that size regulation 
is critical and non-trivial and that developmental models tend to be robust to perturbations.  

 
Jacobi created an impressive artificial genomic regulatory network for the formation of an ANN, 
where genes code for proteins and proteins activate (or suppress) genes [Jacobi 95]. His simulated 
proteins were one of six classes: signal proteins (that diffuse from cells and turn genes in other cells 
on or off), movers (that respond to 'matched' signal proteins and are responsible for exerting 
mechanical forces on cells), dendritic proteins, both excitatory and inhibitory (when matched to 
signal proteins, they cause outgrowth of dendrites from a cell), splitters (responsible for cell 
replication), differentiators (responsible for cell differentiation) and threshold proteins (responsible 
for establishing the neuron thresholds in cells when the growth phase is over). Eventually, a recurrent 
ANN was grown, complete with neurons and dendritic connections. Activation was determined from 



the directions of dendrite growth (excitatory or inhibitory) and the weights were interpreted from the 
strengths of signal proteins. This way, Jacobi was able to evolve a genotype which would set up this 
complex system of cells, proteins and dendrites that would eventually define a fully specified ANN 
that was used to control a simulated Khepera robot for obstacle avoidance and corridor following. 
 
Nolfi and Parisi evolved encoded neuron position and branching properties of axonal trees that would 
spread out from the neurons and connect to other neurons [Nolfi and Parisi 1991] and in later work 
introduced cell division using a grammar [Cangelosi, Parisi and Nolfi 1993]. Unfortunately the 
number of genes in the genome was growing as the number of neurons, thus leading to poor scaling 
behaviour of their approach. Cangelosi [Cangelosi99] has later designed another system for 
development of a neural network that makes explicit use of heterochrony, a notion discussed 
intensively in the developmental biology community [Gould77].  
 
In the mid 1990s Kitano created a strongly biologically motivated model of neurogenesis and cell 
differentiation [Kitano 1995]. He evolved an encoded cell metabolism involving chemicals and 
enzymes. He created a simulation involving diffusion and reaction rules, active transport of chemicals 
through the cell membrane, cell division, death and interaction, nerve growth factors and chemically 
driven axon growth. These were indirect consequences of the basic metabolic system, in other words 
division/ death etc. were not explicitly coded into the system. The fitness of cell genotypes was 
evaluated from amounts of "DNA" synthesized, number of cells and total length of axons. There was 
no cell movement. His primary aim was to create a tool that could improve the understanding of 
biological phenomena at a cellular level.  
 
Astor and Adami have created a developmental model of the evolution of ANN that utilises an 
artificial chemistry [Astor and Adami 2000]. They evolve genetic regulatory networks on a 
hexagonal grid (so that all neighbours are equidistant). Kaneko and Yomo show, in another example 
of the use of an artificial chemistry, how differentiation into different cell types can be explained on 
the basis of a modelled interaction [Kaneko and Yomo 2000]. Other work [Hoile and Tateson 2000] 
use reaction-diffusion systems on the basis of ANNs to produce reaction output.  

 
Dellaert, in his thesis "Towards a biologically defensible model of development", investigated 
models of genetic regulatory networks, multi-cellular development, and neural transport [Dellaert 
1995]. In his model of multi-cellular development he began with a two-dimensional square, which 
was the zygote (fertilised egg) that was forced to divide. Subsequent divisions caused further 
subdivisions of the original square. The cells had state information provided by a random Boolean 
network model. Cell behaviour could be altered through neighbourhood interaction. He represented 
the cell states as different colours and devised performance metrics that could assign a fitness to 
patterns automatically. He showed that he could successfully evolve a range of morphologies within 
the divided square cell context. 

 
Eggenberger has investigated a sort of genomic regulatory network, that he calls differential gene 
expression [Eggenberger 1997, Eggenberger and Dravid 1999]. He has evolved morphologies of 
organisms in three dimensions and also pattern formation mechanisms for patterns resembling 
lepidopteran wings. He suggests that the complex genotype-phenotype mappings typically employed 
in developmental models allow the reduction of genetic information without losing the complex 
behaviour. He stresses the importance of the fact that the genotype will not necessarily grow as the 
number of cells, thus he feels that developmental approaches will scale better on complex problems. 

 
Bongard and Pfeifer have evolved genotypes that encode a gene expression method to develop the 
morphology and neural control of multi-articulated simulated agents [Bongard and Pfeifer 2001]. 



They found that they could evolve agents that perform non-trivial behaviours in a physically-realistic, 
virtual environment.  
 
Bentley and Kumar examined a number of genotype-phenotype mappings (including developmental) 
on a problem of creating a tessellating tile pattern [Bentley and Kumar 1999]. They found that the 
indirect developmental mapping (that they referred to as an implicit embryogeny) could evolve the 
tiling patterns much quicker, and further that they could be subsequently grown (iterated) to much 
larger sized patterns. One drawback of their method, however, was that the implicit embryogeny 
tended to produce the same types of patterns. 

 
 
3. Cartesian Genetic Programming 
 
In this chapter we have used a form of genetic programming known as Cartesian Genetic 
Programming (CGP) [Miller and Thomson 2000]. CGP is a particular form of Genetic Programming, 
that allows the automatic evolution computer programs [Koza 1992, Koza 1994, Banzhaf et al. 1998, 
Koza et al. 1999].  
 
CGP encodes graph-like computer programs. The particular graphs used here are directed and acyclic 
graphs. Essentially the program is a mapping function, mapping input data to output data. In section 4 
the programs map integers to integers, while in section 5, the programs map binary data to binary 
data. To clarify how this works we give a simple example of an encoded program that represents the 
mathematical function  
 

xxxxg +++= 234 2  
 

where the variable x stands for a numerical value. This can be represented using a set of primitive 
operations listed below: 
 

babaf +=),(0  

babaf =),(1  
 

Now suppose that the value of x is made available to us. We will think of this value being supplied 
from a node labelled 0 (i.e. node 0 contains x). Function g can now be represented as an acyclic 
directed graph using the input values x and the functions f0 and f1. 

 
 
 
 
 
 
 
 
In graph form this looks like 
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Now let's look at the first function node 
 
 
 
 
 
It is function 1 so it multiplies whatever is presented at its two inputs (labelled 0), these are both 
connected to the node that produces x, so this means that the value leaving the node is x2. This value 
is labelled 1 (meaning the output of node 1). Node 2 is again a multiplication node and multiplies one 
input (x2) by the other (x), thus producing x3. The process continues in this way until we get to node 7 
which outputs the function g. Note that the outputs of all nodes always connect to the input of a node 
on the right, this is called feedforward (hence directed, acyclic). In CGP graphs of this sort are 
represented by a list of integers. In this case each node requires three integers that describe what its 
inputs are connected to and the function of the node. The graph above would be represented by the 
following list of integers, which we call a chromosome, for reasons that will become apparent shortly 
(the node functions are represented by the function index, in boldface). 
 

0 0 1   1 0 1   1 0 1   2 2 0   3 4 0   5 1 0   6 0 0 
 

Now suppose that we altered one of these integers in the group 3 4 0  to  3 2 0, something interesting 
happens. Node 4 is now not part of the graph and the function the graph represents has changed to g′ 
 

xxxxg +++=′ 234  
 

The 2x3 node (node 4) was disconnected and replaced the x3 node (node 2). Now that node 4 is 
disconnected it could be changed without affecting the graph that was encoded by the chromosome. 
We will refer to node 4 as inactive. Changing a single integer in the chromosome is called a mutation. 
It is not difficult to guess now how we might go about evolving chromosomes of this sort. Next, 
suppose that somebody gave us a table of values for x and h(x), where we are told that h(x) is another 
polynomial, but we are not told its form. If we generate a chromosome at random (respecting, of 
course, that every third integer from the left must be a valid function label, and the two first integers 
in each triple, must be an integer less than the node label) we will always obtain some polynomial 
which we can evaluate to give a table of values for x. We could then compute the difference between 
the value for h predicted from our chromosome and the value for h given in the table. If we computed 
these differences for all the values in the table we could form a measure of how close our polynomial 
is to the unknown one. A measure of this sort is called a fitness function. We could proceed to solve 
this problem by evolving chromosomes of the form described. In all the experiments described in this 
paper we use the following algorithm: 
 
 
 
 
 

 f1 
1 

0 

0 



1. Generate 5 chromosomes randomly to form the population 
2. Evaluate the fitness of all the chromosomes in the population 
3. Determine the best chromosome (called it current_best)  
4. Generate 4 more chromosomes (offspring) by mutating the current_best 
5. The current_best and the four offspring become the new population 
6. Unless stopping criterion reached return to 2 

 
Step 3 is a crucial step in this algorithm: if more than one chromosome is equally good then always 
choose the chromosome that is not the current_best (i.e. equally fit but genetically different). In a 
number of studies this step has been proved to allow a genetic drift process which turns out be of 
great benefit [Vassilev and Miller 2000, Yu and Miller 2001, Yu and Miller 2002]. In later sections 
we may refer to the mutation rate, this is the percentage of each chromosome that is mutated in step 
4. It should be noted that on some occasions (especially in section 5) the program that we are trying 
to evolve has many outputs. These outputs are taken consecutively from the rightmost node in the 
chromosome towards the left. The chromosome length is always made to be larger than the number 
of program outputs. 

 
 

4. Developmental Cartesian Genetic Programming 
 

In this section we describe a new form of CGP which is developmental in character. The 
philosophical standpoint taken is that the cell is the basic unit of biology. We see evolution as a 
process of evolving a cell. The cell is a very clever piece of machinery that can, in co-operation with 
an environment, self-replicate and differentiate to form a whole organism. Thus in developmental 
Cartesian GP (DCGP) we attempt to evolve a cell that can construct a larger program by iteration of 
the cell's program in its environment. Since we are trying to construct graphs made of nodes it is clear 
that we need to identify a cell with a node and different nodes could be cells that have differentiated 
from each other. The environment of a node could be its position and its connections. Imagine that 
we start with a 'seed' node that can only be connected to the program inputs. The seed node will have  
a function also and a position. To clarify the idea let us suppose that the program we wish to build 
has two inputs, x and y (labelled 0 and 1). Let us also suppose that we have two node functions (or 
cell types) f0 and f1 each with two inputs, as in section 3, let f0 add numerically the data presented to 
its inputs and f1 multiply its inputs. Here is one possible seed node: 
 
 
 
 
 
 
 
 
Now we want to run a program inside the node that uses information about the node to construct a 
new one, indeed, we also want it to be able to replicate itself, so that we can grow a larger program. 
The node needs four pieces of information, its two connections, its function and its position and the 
program inside the node needs to take this information and create a new node with connections and a 
function and whether the node should be duplicated. So the situation is now 
 

 f0 
2 

0 

1 
 y 

1 

0  x 



 
 
 
What might the program inside the node look like? Well, we know that it must take in four integers 
and output four integers (the divide output could be just 0, for no replication, and 1, for replication). 
Thus we need to think up a way where a program (which we want to evolve) can do this. Well, if the 
program used the operations of addition and multiplication that would do fine. We have already 
discussed how to evolve programs of that form! However, we need to take care of one more point. 
We are using this program to construct a graph of nodes that is feed-forward so the integers that come 
out of the node program must take the right values (i.e. the connections must be to nodes on the left 
of our current position, the functions must be ones on the list of valid functions, and finally the divide 
must be 0 or 1). Unfortunately it is very difficult to construct programs that will automatically do that 
irrespective of the node position, so we need to resort to something that is a little inelegant. After we 
have run the node program we will need to carry out some sort of operation to bring the numbers into 
the correct ranges. A simple way to do this is to apply a modulo operation. Thus the new picture is 
shown below: 

 
 
 

Let the outputs of the node program be W, X, Y, Z then if we divide Z and Y by the position P and 
take the remainder we will get two integers A′ and B′ which will be valid connections to nodes on the 
left of the current position P. If we have Nf  possible node functions then the mod operation will once 
again map the output integer X to a valid function type F′. Finally we will need to take the integer, 
W,  that decides whether the node is to be replicated, and find out whether it is even or odd using the 
mod 2 operation.  
 
So far we have not defined a node program. Here will construct a simple one and apply it just to show 
that the whole idea actually works. Suppose the node program is defined by the following rules: 
 



Z  = (2A+B),     A′ = Z mod P 
Y = (Z+F),        B′ = Y mod P 
X = Y + P,        F′ = X mod Nf 
W = ZX,           D = W mod 2 

 
Now we use the seed node defined earlier (A = 0, B = 1, F = 0, P = 2). Applying the above rules we 
get 
 

Z  = (0+1) = 1,     A′ = 1 mod 2 = 1 
Y = (1+0) = 1,      B′ = 1 mod 2 = 1 
X = 1 + 2 = 3,       F′ = 3 mod 2 = 1 
W = 3,                  D =  3 mod 2 = 1 
 

The divide signal is 1 so the new node is replicated and we obtain 
 
 
 
 
 
 
 
 
The graph represents the function g = y2. The n program outputs are assumed to be taken from the n 
nodes with the largest output labels (i.e. here we have one output taken from node 3). 
 
 
Now applying the node program in each node we obtain 
 
                 First node (P = 2)      Second node (P = 3) 
 

Z  = (2+1) = 2,     A′ = 2 mod 2 = 0   Z  = (2+1) = 2,     A′ = 2 mod 3 = 2 
Y = (2+1) = 3,      B′ = 3 mod 2 = 1   Y = (2+1) = 3,      B′ = 3 mod 3 = 0 
X = 3 + 2 = 5,       F′ = 5 mod 2 = 1    X = 3 + 2 = 5,       F′ = 5 mod 2 = 1 
W = 2x5 = 10,      D = 10 mod 2 = 0    W = 2x5 = 10,      D = 10 mod 2 = 0 

 
So we now obtain 
 
 
 
 
 
 
 
The nodes have connected themselves together and the graph represents the function g = x2y. 
 
How can we obtain the rules that define how nodes get transformed? Remember that the whole idea 
here was to evolve the rules inside a node, then apply those rules inside every node of the graph so 
that a new graph is built. But we already know how to represent rules that will map integers to new 
integers! We use a Cartesian program inside the nodes. So the picture now is: 
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Thus all the nodes of the developing graph have identical chromosomes inside them that represent the 
node program rules. For instance the rules we used in our example could be represented by a 
chromosome of the form: 
 

0 0 0   4 1 0   5 2 0   6 3 0   7 5 1 
 
Chromosomes of this form could themselves be subject to evolution using the algorithm defined in 
section 3.  
 
Let us summarise what we have achieved here. We found described a way of building programs by 
running identical programs in nodes. We can iterate these programs and build enormous programs 
that would have required very large amounts of information to specify. We can evolve the node 
programs to try to obtain solutions to many problems. The way the method works is similar in some 
respects to real biology where cells replicate and differentiate to create enormous collections of cells 
that we call organisms. The hope is that it might prove easier to evolve relatively small programs and 
then iterate those programs to build very large programs rather than evolve the very large programs 
directly. Some early experiments have been performed using these ideas and it appears that for 
simple problems it is easier to evolve a chromosome that represents a program using a non-
developmental approach (see section 3). Although, certainly, it would be inconvenient to have to 
evolve enormously long chromosomes it isn't obvious that it would necessarily take more generations 
to evolve a good solution than evolving smaller developmental chromosomes. This is because as the 
size of a program grows there are more ways that it can solve a problem [Langdon 1999]. There are 
obvious reasons why nature chooses to build things in a developmental way. It is much easier for 
large organisms to carry little packets of information around that under the right circumstances can 
grow into a mature organism. Just think of a tree, its seeds can be blown or carried for miles by the 
wind or inside the gut of birds. Thus there are strong energetic reasons in favour of development.  
 
The techniques described in this section have benefitted from a number of aspects of developmental 
biology, however it is not clear how the field of developmental biology can benefit. In the next 
section we will discuss another form of computer problem solving using developmental ideas that we 
think will hold some promise of contributing to developmental biology, inasmuch as it may allow the 
exploration of ideas that are relevant to that domain. 

 



5. Evolving growing two-dimensional maps 
 
In section 4 we described a method for evolving the program for a cell, where the cell was a node in a 
graph. As we continued to run the identical programs in the cells, graphs of increasing size could be 
constructed. After a pre-determined number of iterations of this process the graph (or organism) 
constructed was tested against a user specification of the problem that was to be solved. We found 
that is was necessary to impose modulo conditions on the outputs of the cells so that valid programs 
or graphs could result. Although the ideas behind the method were inspired heavily from biological 
development we wished to extend the ideas to an invented world that was in some sense, closer to the 
real biological world. In this way we hoped that our work would potentially shed some light at a 
conceptual level on real problems of biological development and, at the same time, allow us to 
address fundamental issues in the evolution of computer programs.  
 
 
5.1 How cells and chemicals are represented 
 
In this section we describe our attempts to create a two dimensional world of cells of different types, 
each carrying identical genotypes that may grow, die, change colour and receive and emit chemicals. 
As in section 4 we evolve the genotype of the cell so that after a period of time we obtain a two-
dimensional map that meets the user's requirements. We emphasise that we have attempted to 
construct the simplest possible way of doing this. Our aim is to understand the importance of various 
factors in an embryological growth process and we feel that an overly complicated model would 
make it difficult to assess the relative importance of these factors. We wish to shed light on questions 
such as: How can collections of independent cells interact and coordinate their activity so that they 
build an organism? How can the cells build increasingly larger versions of that organism that are 
faithful to the same body plan? What is the relative importance of direct cell interaction and global 
chemical signalling? How can growth be regulated? 
 
The world we envisage is binary, so that amounts of chemical, cell types and actions can be denoted 
as binary codes. The genotype is a representation that encodes a Boolean circuit (that implements the 
cell program) that maps input conditions to output conditions. A cell sees its own state and the states 
of its eight immediate neighbours. It also sees the amount of chemical (at present a single chemical) 
at the location of each of its eight neighbours. From this information the cell program decides on the 
amount of chemical that it will produce, whether it will live or die, whether it will change to a 
different cell type at the next time step, and how it will grow. Unlike real biology, when a cell 
replicates itself, it is allowed to grow in any or all of the eight neighbouring cells simultaneously (this 
is done to speed up growth, mainly for reasons of efficiency) . The situation is described in Fig 5.1 



 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                      
 
                                       (a)                                                   (b) 
 
Figure 5.1:  (a) shows a white cell surrounded by 6 neighbours (0 denotes an empty or dead cell, 1 a blue 
cell, 2 a red cell and 3 a white cell), (b) shows the chemical environment at the location of the cells.  
 
Let us suppose that a chemical is represented by an eight bit binary code and that there are four cell 
types (dead, blue, red, white). The cell program reads simultaneously the eight bit codes for all the 
neighbouring locations, the two-bit code signifying the cell’s own type, followed by the two-bit codes 
representing the types of all the neighbours in a clockwise fashion. The cell’s program defined by its 
genotype (see below) then outputs the following bits: a four bit chemical code indicating the new 
strength of the chemical to be produced by the cell or daughter cells at the next time step, two new 
cell type bits, followed by an eight bit growth code that indicates where the cell will replicate itself, 
starting at NW and then denoting places to grow in an anticlockwise manner.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.2:  How data from the environment is read by the cell and results in change at the next time 
step 
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If the cell program dictates that the cell should grow but that its new type is 0 then the cell will still 
grow into its chosen locations, but it and its replicated offspring will then die. Also the chemical level 
dictated by the cell program only applies to locations where the cell grew. If the cell dies, the 
chemical level on that square will be the previous value.  
 
Chemicals can diffuse according a number of user selected fixed diffusion rules. For all of the 
experiments reported in this chapter the diffusion rule is given below: Let N denote the neighborhood 
with neighbouring position k,l, the chemical at position i,j at the new time step is defined by the 
update rule: 
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In the absence of cells, this rules ensures conservation of the chemical. However cells have no 
"energy " constraints placed upon them and can pump out the maximum amount of chemical allowed 
(i.e. 255 if there are eight chemical bits). This diffusion rule is updated at the same time step (for the 
whole map) as the cells. Other diffusion rules have been implemented that allow chemicals to diffuse 
over a wider area but as yet we have no definitive results as to their efficacy. The way the chemical 
and cell maps are updated is as follows: The original maps are scanned cell by cell from the top left 
corner of the map. The updated cell growth, differentiation or death is recorded on the new map. 
Cells that are later in the scan sequence may overwrite an earlier cell. This introduces an unavoidable 
bias towards cells at the bottom right (since these are last to be scanned). The drawbacks of cell 
overwriting will be discussed later. 
 
 
5.2 How a cell program is encoded into a genotype 
 
In section 4, we discussed how one could represent a program or circuit in the form of a string of 
integers (the Cartesian genotype). In all the experiments reported here we used a genotype of 400 
integers. Each group of four integers defines a type of 2 to 1 multiplexer and its three connections. A 
2 to 1 multiplexer is a three input Boolean logic gate that expresses the following function: 
 

CBCACBAf ..),,( +=  
 

where A, B, C are binary inputs and the dot represents the AND logic function, the + the inclusive 
OR function and the bar the NOT operation (inversion). We employed four types of multiplexers, 
corresponding to whether the inputs A and B were inverted. It is well known in digital electronics 
that any Boolean function can be constructed from multiplexers defined by f above (allowing the four 
types simultaneously increases the complexity of Boolean functions that can be built from a given 
number of gates). 



5.3 Experimental parameters 
 
The algorithm used to evolve the cell genotypes has been described in section 4. The particular 
experimental parameters used in the experiments reported in this chapter are the following (unless 
otherwise stated) 
 

Experimental parameter Value 
Population size 5 

Number of generations 30,000 
Number of runs 10 
Mutation rate 1% 

Maximum number of multiplexers 200 
Number of chemical bits 8 

Number of cell types 4 
Iterations at which fitness tested variable 

 
 
 
5.4 The tasks the cellular maps were supposed to accomplish 
 
The French Flag model of Lewis Wolpert [Wolpert 1998] was the inspiration for the task the maps of 
cells were to achieve. In particular we looked at two problems. We wished to evolve a cell program 
that, over a given period of time, would construct a French flag. Moreover we wanted the flag to 
grow with time but always be recognisable as a French flag. For the second the problem we wanted to 
grow a French flag of a given size and have the flag remain that size subsequently. One can think of 
the French flag as an organism, a rectangular creature with three vertical stripes, blue, white and red. 
We were interested in whether it would prove possible to evolve the cells' program to construct such 
a creature. If such a creature were constructed, how would it behave when it was damaged, or 
particular cells were transplanted into other regions? In this toy world we reasoned what could 
conduct 'classic experiments' that have been demonstrated in the real world of biological 
development. In addition, by seeking to evolve programs that could be indefinitely iterated over time 
we wished to investigate methods of evolving programs that could grow structures without limit. 
 
Flags or maps were defined as a simple grid of cells that we wished the initial seed cell to grow into. 
Figure 5.3 shows how two French flags were defined: 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5.3:  The specification for some French flags (medium, large) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 1 1 3 3 3 2 2 2 0 0 0 0 
0 0 0 1 1 1 3 3 3 2 2 2 0 0 0 0 
0 0 0 1 1 1 3 3 3 2 2 2 0 0 0 0 
0 0 0 1 1 1 3 3 3 2 2 2 0 0 0 0 
0 0 0 1 1 1 3 3 3 2 2 2 0 0 0 0 
0 0 0 1 1 1 3 3 3 2 2 2 0 0 0 0 
0 0 0 1 1 1 3 3 3 2 2 2 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 1 1 1 3 3 3 3 2 2 2 2 0 0 0 
0 1 1 1 1 3 3 3 3 2 2 2 2 0 0 0 
0 1 1 1 1 3 3 3 3 2 2 2 2 0 0 0 
0 1 1 1 1 3 3 3 3 2 2 2 2 0 0 0 
0 1 1 1 1 3 3 3 3 2 2 2 2 0 0 0 
0 1 1 1 1 3 3 3 3 2 2 2 2 0 0 0 
0 1 1 1 1 3 3 3 3 2 2 2 2 0 0 0 
0 1 1 1 1 3 3 3 3 2 2 2 2 0 0 0 
0 1 1 1 1 3 3 3 3 2 2 2 2 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
 



Initially a single cell was placed at a position in the map and the task was defined so that after a given 
(user defined) number of iterations of the cell program in every position where the cell was alive we 
required the collection of cells to be as close as possible to the configuration defined in Fig. 5.3. 
Initially we could also define an initial chemical map, typically we would set the chemical to the 
maximum allowed value at the same location as the initial cell. To try to direct the evolution of cell 
programs to the desired end we could state a list of maps together with the iterations at which they 
were expected. At each test point the organism was compared with the desired map. A simple 
numerical sum was calculated of all locations in the map where the grown map agreed with that 
required (including empty or dead cells in the map). The sum was calculated for all the desired maps. 
Later we discuss various possible shortcomings of this definition of a fitness of a particular cell 
program. 
 
 
Section 5.5    Experiments and results 
 
In the first experiment we required that the cells develop into the medium sized flag at iteration 7 
(iteration 0 means the starting map) and the large flag at iteration 9. The maximum score was 512. 
The best result we obtained in the ten runs had a fitness of 491 and the average fitness of the 10 runs 
was 456. In Figure 5.4 we show the history of development of the best solution up until iteration 9. 
 

    
             iteration 0                       iteration 1                        iteration 2                        iteration 3 

    
            iteration 4                       iteration 5                        iteration 6                        iteration 7 

  
            iteration 8                       iteration 9 

Figure 5.4:  The developmental history of a cell program 



 
It is curious how, even though the initial white cell is correctly placed with regard to the French flag, 
it nevertheless grows into two red cells. At iteration 5 white cells appear and blue cells make a first 
appearance at iteration 6, only one iteration away from the first test point! The corresponding 
developing chemical map is shown in Figure 5.5. At early iterations there appears to 
 

    
            iteration 0                       iteration 1                        iteration 2                        iteration 3 

    
            iteration 4                       iteration 5                        iteration 6                        iteration 7 

  
            iteration 8                       iteration 9 
 

Figure 5.5:  The chemical history of the growing cellular map 
 
 
be virtually no chemical present, however levels are so low that they are barely perceptible in the 
grey background. 
 
It should be stressed that during the evolution of the cell genotype the assessment of the cells 
phenotype (the cellular map) was only every made at iterations 7 and 9, so that different evolved 
genotypes are likely to display very different growth behaviours. In our next investigation we 
examined the longer-term behaviour of the growing cellular map. What would the embryo look like 
beyond nine iterations? Would the map become so distorted that it was no longer recognisable as a 
French flag? In Figure 5.6 we show how the cellular map develops over a further 11 iterations. 
 
 



 

    
            iteration 9                       iteration 10                        iteration 11                        iteration 12 

    
            iteration 13                       iteration 14                        iteration 15                        iteration 16 

    
            iteration 17                       iteration 18                        iteration 19                        iteration 20 

 
Figure 5.6:  The developmental history of the cellular map beyond the last fitness testing point at 

iteration 9. 
 
One of the striking observations about the maps after iteration 9 is the neat regularity of the blue 
section of the flag. Notice the single missing blue cell in the bottom left corner is present in all the 
maps, also that three sides of the blue region are straight as desired. At iteration 13 two white cells 
appear at the top right of the blue section. What has caused this behaviour? The cellular 
neighbourhoods in this region are fairly constant so it may be some underlying change in the 
chemical signature of the region. The diagonal red region may be caused by the asymmetry of the cell 
update rule, this bears further investigation. The chemical milieu is an important factor in the 
behaviour of the cells. This is easy to show by comparing the cellular map at iteration 10 when all the 
chemicals are removed from the chemical map at iteration 9 (Figure 5.8) 
 



                                                          
                    iteration 10 (chemical map untouched)         iteration 10 (chemical map altered) 
 

Figure 5.8:  Differences caused in growing cell map due to imposed chemical changes 
 
The next series of experiments revealed some fascinating parallels with real developmental biology. 
If we remove some parts of the embryonic French flag organism, what will happen? We removed the 
white and red cells from the cell map at iteration 9 and then proceeded to continue to grow the map 
(leaving the chemical map at iteration 9 unchanged). Since the blue region of cells are growing in 
such a regular way it seemed natural to expect that we would obtain a growing blue region of cells. 
However the results shown below (Fig. 5.9) quickly revealed a much more interesting behaviour. 
 

    
            iteration 9                       iteration 10                        iteration 11                        iteration 12 

    
            iteration 13                       iteration 14                        iteration 15                        iteration 16 

    
           iteration 17                       iteration 18                        iteration 19                        iteration 20 
 

Figure 5.9:  Development of corrupted French flag grown from blue cell region of original 



 
The blue region tries to grow into the French flag again! Though it cannot quite manage it. The 
chemical map used for the blue region was the same as the chemical map that had been established 
for the whole complete map. It is possible that different behaviour may have occurred had we used an 
initial chemical map that was only local to the blue region. It is clear that the computer experiments 
have some parallels to the experimental problems that occur when developmental processes are 
altered in that alterations to the chemical conditions in altered embryos may lead to developmental 
effects (rather than solely being due to the alteration of the embryo alone).  
 
In the first of two further experiments we cut a large hole in the centre region of the flag (at iteration 
9) and iterated to see what would happen (Fig. 5.10) and also, we cut the flag diagonally (Fig 5.11). 
 

    
            iteration 9                       iteration 10                        iteration 11                        iteration 12 
 

    
            iteration 13                      iteration 14                      iteration 15                      iteration 20 

 
Figure 5.10:  Development of cells when a rectangular section is removed from the embryonic map 

 
 

Once again we see that the cells gradually rebuild the map. Interestingly the red region of the map at 
iteration 15 is identical to the red region on the original uncorrupted map at iteration 15. It seems that 
the section of red cells removed was of little importance. 
 
 
 
 
 
 
 
 
 
 
 



    
            iteration 9                       iteration 10                        iteration 11                        iteration 12 

     
            iteration 13                      iteration 14                       iteration 15                     iteration 16 

    
             iteration 17                     iteration 18                      iteration 19                      iteration 24 
 

Figure 5.11:  Development of cells when a diagonal section is removed from the embryonic map 
 
After embryonic cells are removed (iteration 9) we see that the blue region remains untouched, once 
again we see the familiar growing rectangular blue shape (with the bottom left corner missing). Red 
cells begin to appear at the top right section of the map, while the remaining red region at the bottom 
right begins to grow upwards until by iteration 24, the regions are almost joined. The white cells 
initially invade the growing blue region but eventually (iteration 24) appear to retreat. As time 
progresses the embryonic array starts to recover completely from the initial damage and takes on an 
appearance similar to the cell maps of the undamaged embryo (Fig. 5.6).  
 
In all the experiments described so far we have seen continued growth of the embryonic cellular map. 
Of course, in biological development growth ultimately ceases. The next experiment attempts to 
create an embryonic cell that matures to a French flag appearance of a given size and then 
subsequently remains at that size irrespective of the number of further iterations of the cells' program. 
It is very hard to see how such a task could be accomplished without chemical signalling, as there are 
two phases: growth, followed by stasis. Something would have to change in the environment to make 
this possible. It was hoped that the cells might be able to use some characteristics of the chemical 
map to make this possible. 



      
       iteration 0              iteration 1             iteration 2             iteration 3              iteration 4 

      
       iteration 5              iteration 6             iteration 7             iteration 8              iteration 9 

      
      iteration 10            iteration 11           iteration 12           iteration 13            iteration 14 

     
       iteration 15            iteration 16           iteration 17           iteration 18            iteration 19 

      
        iteration 20            iteration 21           iteration 22           iteration 23            iteration 24 

     
        iteration 25            iteration 26           iteration 27           iteration 28            iteration 29 

 
Figure 5.12:  Development of cells required to grow to a fixed size map (at iterations 5,6,7,8) and 

then iterated over a much longer period. 
 
The results shown in Fig 5.12 are very encouraging. Firstly, although the growth of the embryonic 
array of cells does not halt, it is considerably slowed (this is evident when one compares iteration 20 



with the same iteration in Fig. 5.6). Additionally the appearance of the cellular map is much closer to 
the French flag, in that the coloured bands are more regular and are approximately vertical. The 
longer-term behaviour of the cellular map is more complex. Fig. 5.13 shows the situation at iteration 
46. 
 

 
 

Figure 5.13:  Cellular map at iteration 46 of developing cell program shown in Fig. 5.12 
 

In the next experiment the same cell program was run but with all chemical levels set to zero. In this 
way we could investigate the sensitivity of the cell program to the chemical environment during 
growth. We could also investigate the importance of the chemical to slowing down growth after 
maturity. The results are shown in Fig. 5.14. 
 

     
        iteration 0                 iteration 1                iteration 2                 iteration 3              iteration 4 

     
        iteration 5                 iteration 6                iteration 7                 iteration 8              iteration 9 

    
        iteration 10             iteration 15                 iteration 20              iteration 25           

 
Figure 5.14:  Development of cells grown from the program in Fig. 5.12 but without any chemical 

environment 
 



At first the embryonic cell map develops in the same way (until iteration 2), but then gradually 
departs from the same behaviour as its chemical-rich counterpart, eventually assuming a triangular 
shape. Note that the cell mass appears to be growing at approximately the same rate. It is not possible 
to conclude from these data that chemical sensitivity of cells is essential to prevent growth. However, 
further experiments revealed that the presence of chemicals is an important factor in obtaining a cell 
program with a high fitness. Two sets of ten runs of the evolutionary algorithm were performed under 
identical conditions except that in one there were no chemicals. The runs with chemicals had an 
average fitness of 438 (standard deviation = 26.04), while the runs without chemicals had an average 
fitness of 400 (standard deviation 14.06). 
 
In the final experiment we wanted to see whether we could obtain a regular series of spots. We chose 
to require that the embryonic array of cells assume the pattern below (with perfect fitness 196) after 
the fifth iteration (the initial being 0) 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 3 3 3 3 3 3 3 3 3 3 0 0 
0 0 3 3 3 3 3 3 3 3 3 3 0 0 
0 0 3 3 1 1 3 3 1 1 3 3 0 0 
0 0 3 3 1 1 3 3 1 1 3 3 0 0 
0 0 3 3 3 3 3 3 3 3 3 3 0 0 
0 0 3 3 3 3 3 3 3 3 3 3 0 0 
0 0 3 3 1 1 3 3 1 1 3 3 0 0 
0 0 3 3 1 1 3 3 1 1 3 3 0 0 
0 0 3 3 3 3 3 3 3 3 3 3 0 0 
0 0 3 3 3 3 3 3 3 3 3 3 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
 

Figure 5.15:  Required 'spots' pattern using white cells and blue spot cells 
 
We still allowed red cells. The experimental parameters were as before (section 5.3). We obtained 
three runs out of ten that achieved the perfect score. The three runs produce very different solutions 
to the problem! The runs are shown in Figs 5.16 and 5.17. 



RUN 0                    

      
      iteration 0            iteration 1           iteration 2           iteration 3            iteration 4           iteration 5 

      
      iteration 6           iteration 7            iteration 8           iteration 9            iteration 10        iteration 11  

      
     iteration 12          iteration 13          iteration 14          iteration 15          iteration 16      iteration 17  

 
RUN 3 

      
      iteration 0            iteration 1           iteration 2           iteration 3            iteration 4           iteration 5 

      
      iteration 6           iteration 7            iteration 8           iteration 9            iteration 10        iteration 11  

      
      iteration 12          iteration 13          iteration 14          iteration 15          iteration 16      iteration 17  
 
 
Figure 5.16:  Development of cells that solve perfectly the required task of 4 blue spots at iteration 5. 
 
 



 
 
RUN 7                    

      
      iteration 0          iteration 1          iteration 2          iteration 3           iteration 4           iteration 5 

      
      iteration 6          iteration 7         iteration 8         iteration 9            iteration 10        iteration 11  

      
      iteration 12       iteration 13        iteration 14        iteration 15         iteration 16        iteration 17  

 
Figure 5.17:  Third run that solves perfectly the required task of 4 blue spots at iteration 5. 

 
In Figs. 5.16 and 5.17 we see an extraordinary variety of ways of accomplishing the given task. The 
embryological development is identical for the first three iterations. They all show an alternating 
pattern type on odd versus even iterations. The cellular maps corresponding to run 3 are quite 
extraordinary in their beauty and consistency. At even iterations there are repeating units of the 
pattern seen in iteration 4. A magnified section in the centre is shown in Fig. 5.18.  
 
 

 
 

Figure 5.18: Magnified section of cellular map for run 3 iteration 4 . 
 
 
How important are the chemical emissions to this precise process? We investigated the cellular 
program for run 3 without any allowed chemicals (i.e. the program was identical, however all 
chemical outputs produced by the cells were set to zero). The results were dramatically different (Fig 
5.19). 
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      iteration 2             iteration 3            iteration 4             iteration 5             iteration 6           iteration 17 
 

Figure 5.19: Cell program of run 3 with no chemical environment 
 

 
This is an amazing result. The cellular map for run 3 is extremely precise and regular yet it depends 
on a chemical map with its inevitable fluctuations from iteration to iteration. Figure 5.20 shows the 
chemical maps corresponding to the cellular maps for run 3 (Fig. 5.16). It is important to note there 
are small, apparently random fluctuations of the chemical level that are not visible in the figures, it 
appears that the extremely precise cell behaviour is insensitive to this minor variation.  

 

      
        iteration 0         iteration 1            iteration 2            iteration 3           iteration 4             iteration 5    
 

       
       iteration 6                iteration 7        iteration 8        iteration 9           iteration 10           iteration 11   
      

      
     iteration 12        iteration 13          iteration 14            iteration 15        iteration 16         iteration 17 
 
Figure 5.20:  Chemical maps corresponding to the cellular maps for run 3 (Fig. 5.16) - black indicates 
an absence of chemical. The almost white regions correspond to a chemical level of 228 and the light 
grey regions to a chemical level of 221. 
 
 
A magnified picture of the cellular and corresponding chemical map at iteration 17 are shown below: 



  
 

Figure 5.21:  Cellular and corresponding chemical map at iteration 17. 
 

 
When the cell is evolved with no chemicals at the outset it achieves an average fitness of  181.7 and 
the best solution reached has a fitness of 192 (out of 196), while under the original scenario the 
average fitness is 190.6 (with the three perfect solutions described). 

 
 

5.6 Analysis of the genotype 
 
One potential advantage of the techniques presented in this chapter is that the genotype is explicitly 
inspectable (i.e. a system of rules). The genotypes have had 200 nodes (strings of 400 integers). 
Typically only half of the nodes are active. At present the programs that produce the interesting cell 
growth and behaviour discussed have not been analysed. We hope that we might learn a lot from such 
an analysis. How can a program produce the elegant behaviour seen in Fig. 5.16? We hope to report 
our findings in due course. 
 
 
5.7 Discussion 
 
There are many aspects of this work that warrant further investigation. Firstly the basic technique 
described could possibly be improved. It is likely that the cell update procedure being used may be 
making it more difficult to evolve a cell program that exhibits the desired behaviour. At present the 
cell map is scanned in a fixed order row by row starting at the top left position and finishing in the 
bottom right position. Cells may overwrite each other. This is illustrated below: 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.22:  The cell update problem 
 
In the real world cells, of course, occupy space and cannot be located at the same place, or overwrite 
each other. Therefore, one idea would be to include, within the cell’s own genotype, an adjudication 
function that decided how the cell would grow into the new location depending on the demands of the 
other cells that could possibly grow into the same location. Ideally, one would implement some sort 
of cell shuffling procedure so that overwriting was not possible, however this would be difficult and 
time consuming in practice. 
 
In real biological development there are stem cells that gradually differentiate into more specialised 
types of cells. In the simulations reported here all cells are stem cells. One could, of course, create 
restrictions so that cells could only replicate cells of the same type and introduce a special stem cell 
type that could replicate and then specialise. The idea of allowing simulated cells to gradually 
differentiate would be difficult without dictating exactly how they should do so. One of the 
motivations for the work reported here is to give evolution as much freedom as possible. 
 
Another line for future work will be to allow a number of different chemicals, perhaps emitted by 
particular cells (i.e. blue, red and white chemicals). One could perhaps observe the emergence of 
morphogens.  
 
One of the real difficulties of the approach described here is the imposition of the fitness function. It 
would be nice to see if a fitness function could be defined that tested the growing cellular map in an 
orientation independent way. This would be likely to speed up the rate at which complex maps could 
be evolved. Further work is already underway on adapting the methods described here to the problem 
of growing electronic circuits (in simulation). In this scenario one would be testing the function of a 
particular map, this would be less dependent on orientation. 
 
We saw how these embryonic arrays could repair themselves after damage. This observation suggests 
a further investigation of such behavior. One could impose damage sporadically and try to evolve 
cellular programs that naturally repaired themselves. Currently, in a field known as Evolvable 
Hardware there is strong interest in self-repairing circuits. 

 

Previous map 

new map 

Cell location to be 
updated 



In the work described in section 5 we have used digital multiplexers as our basic computational units. 
More complex functions could be employed (such as digital adders, comparators, multipliers), this 
would probably increase the speed of evolution and the complexity of resulting cellular maps.  
 
In preliminary work we included cell movement as part of the cell program output, but this deserves 
further investigation. Chemotaxis could be evolved and investigated by placing a chemical source at a 
point in the map and defining the cells’ task as one of moving (and/or growing) toward the source.  
 
There is a bias toward growth in the representation currently used, as there are eight growth bits, all 
of which must be zero for zero growth to occur. 
 
In the experiments reported here we have begun with a single cell, however it would also be 
interesting to investigate multiple seed cells. 
 
 
 
8 Concluding Remarks 

 
Most researchers in computer science who are using developmental processes are trying to define 
genotypes which they can evolve that lead to solving enormously complex problem. At present there 
is still only tentative evidence that direct encodings are less effective than developmental ones. Part 
of the problem is that researchers have still not reached a consensus about what are complex 
problems. Almost by definition one is imagining problems whose smallest reasonable solution is of 
enormous size, these problems are inevitably time consuming and so are relatively unexplored. There 
is a great need within the community to define clearer milestones for achievement. The new 
researcher is faced with a difficult question at the outset: Should I try to create as realistic simulation 
of real biology as possible or should I try to build the simplest system that can generate complexity? 
How can I define complexity? It is our conviction that if we are to make any contribution to thinking 
about biological development we need to look for the simplest and most general principles. We 
should be trying to define much more clearly how a form of simulated development that is evolvable 
can contribute to computer science. It is clear that real biological development is making use of 
enormous physical complexity. Some researchers are trying to enrich their developmental systems so 
that novel exploitable features may emerge [Bentley 2002], indeed some are thinking even further 
and trying to use a computer to control and evolve developmental processes that are embedded in the 
physical world.  
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