Mesoscopic Analysis of Self-Evolution in an Artificial Chemistry

Peter Dittrich and Jens Ziegler and Wolfgang Banzhaf
University of Dortmund, Dept. of Computer Science D-44221 Dortmund, Germany
http://ls11-www.informatik.uni-dortmund.de
dittrich || ziegler || banzhaf@LS11.informatik.uni-dortmund.de

Abstract

In an algorithmic artificial chemistry the objects
(molecules) are data structures and the interactions
(reactions) among them are defined by an algorithm.
The same object can appear in two forms: (1) as an ac-
tive machine (operator), (2) as passive data (operand).
Thus, the same object can act on other objects or
it can be processed by others. This dualism allows
the implicit definition of constructive artificial chem-
ical systems, which exhibit quite complex behaviors.
In our case even evolutionary behavior has been ob-
served which is notable, because no explicit muta-
tion, recombination or fitness function is involved. Ev-
ery variation is exclusively performed by the objects
(molecules) in their machine form. In addition to
microscopic methods (e.g. monitoring the actions of
single molecules) and macroscopic measurements (e.g.
diversity, complexity) we developed a stepwise meso-
scopic analysis method based on classification and dy-
namic clustering. Knowledge about the system is ac-
cumulated in a cyclic process, where measuring tools
(classifiers) extract information, which is again used
to create new classifiers.

Keywords:

self-organization, strong artificial life, evolution, com-
putational chemistry, visualization, constructive dy-
namical systems, algorithmic chemistry, chemical
computing, cluster analysis, binary string system, au-
tomata reaction

Motivation

The construction of artificial life systems with com-
plex behaviors is surprisingly easy. Analysis is often
much harder, especially in population based systems
where a huge number of diverse individuals are inter-
acting. In this case the reduction of experimental data
is required. Measuring only macroscopic parameters
(i.e. temperature, diversity or complexity) allows to
see that something is happening, but does not pro-
vide insight into how or what. Microscopic tracing of
an experiment and understanding every single step is
possible in principal. But with growing computational

... "knowledge"
“[collectionaff ==~ R
7 classifiers O
xperiment
raw data application of |- creation of new
> classifiers classfiers | ™

\ "-:data

Figure 1: Cyclic increase of knowledge.

resources this becomes more and more difficult, proba-
bly impossible, because time complexity for the gener-
ation of n microscopic events (i.e. O(n)) is lower than
time complexity needed for analysis (i.e. O(nlog(n) for
sorting the population). Therefore, methods for anal-
ysis in between macroscopic and microscopic methods
are required.

In this paper we present a stepwise mesoscopic anal-
ysis method for artificial chemistries, which might as
well be applied to other population-based systems.
In the mesoscopic analysis the population is decom-
posed into groups. The decomposition is based on so
called classifiers. A classifier represents a property
of an object. A first-order classifier 1s simply a func-
tion C' : S — [0,1]. The value C(s) represents the
strength of a property C' of a string s and is used for
a separation of the population into partial quantities
with a cluster algorithm. Data produced by the clas-
sifiers as well as the collection of classifiers themselves
represent knowledge about the system. This knowl-
edge will grow by creating and collecting more and
more classifiers. It is then possible to gain more infor-
mation about the system by classifying the classifiers,
i.e. by analyzing the basic properties of classifiers with,
for example, the same clustering procedure that sepa-
rated the population. This can be done in an iterative
cyclic process (Fig. 1).

The mesoscopic analysis introduced here will be
demonstrated in a specific artificial chemistry.

Mesoscopic Analysis

The mesoscopic analysis is a tool to find groups in data.
The field of data analysis provides an overwhelming
amount of methods, ranging from classical statistical
methods (i.e. correlation analysis, c-means clustering)
to modern adaptive methods from the fields of compu-
tational intelligence (i.e. neural networks, genetic pro-
gramming). Furthermore, many more complex meth-
ods exist specialized for certain problem domains.

Here, we do not present a new classification or
clustering method, but we suggest a method how to
apply available data analysis methods on artificial
chemistries or on another population-based evolution-
ary artificial life system. Our method will allow the
integration of different available data analysis tools in
an uncomplicated way.

First-Order Classifier: Property

A first-order classifier C relates an object to a prop-
erty. From an object oriented point of view we can say
that a classifier represents a property and is able to
indicate to what extend an object has this property. A
first-order classifier is defined as amap C' : S — [0, 1].
Without loss of generality and for simplification the
output of a classifier is normalized. If the output of C'
is either 0 or 1 we call the classifier binary. If it is
continuous it might be called fuzzy.

There are different ways of constructing a classifier:
(1) manually by estimating the classifying property
through an apriori analysis of the data, and (2) au-
tomatically by learning of a mapping C'. Typical ex-
amples are artificial neural networks or evolutionary al-
gorithms or any supervised or unsupervised algorithm
with the ability to create the classifying function C'.

A typical example for a manually defined classifier
is a detector Cy for a certain subsequence s. For the
binary case Cs(s') is equal to 1 if the s can be found
in s’ otherwise 0.

Second-Order Classifier - Distance

A second-order classifier is defined as a mapping
C :SxS — [0,1]. Tt relates one object to an-
other. A second-order classifier can also be called
a distance measure or shortly distance. If the
condition C(s,s"”) < C(s,s') + C(s',s") is valid and
C(s,s) = 0, the classifier C' is a metric.

As in the previous section we can define C' manu-
ally. A well known distance measure is for example
the Hamming distance.

For an automatic generation the application of an
evolutionary algorithm would be plausible. Its fitness
function could rely on the phenotypic/genotypic be-
havior of the objects or could be given implicitly by
user interaction (Banzhaf, 1997).

It 1s also possible to construct a second-order clas-
sifier C'r based on first-order classifiers Cy,...C), by
using Euclidean distance

Crls,5') = \/Z () =Gl ()

or methods taken from fuzzy set theory, 1i.g.
(Miyamoto and Nakayama, 1986):

N _ 2o min(Cy(s). C(s'))
Cr(s,s') = =4
r(ss) S man(Ci(s)Ci(s)) D

Application and Integration of
Classifiers

In this section we will describe and demonstrate meth-
ods how classifiers can be integrated into a mesoscopic
analysis of an evolutionary population system. The
development of the population P = (s1,...,sp) in
time needs the analysis of P(t) (population at time ?)
for every single time step. The results of consecutive

analysis have to be compared and put into relation.

Clustering

The task of a cluster analysis procedure is the clas-
sification of a set P = {s1,...,s,} into ¢ partial
quantities (Bacher, 1996; Dunn, 1974). Each of these
quantities is represented by a so-called prototype
vi, (1 = 1,...,¢). The degree of affiliation wu; of
object s; to cluster c¢g is computed and describes the
probability of s; to belong to cgx. In the case of fuzzy
clustering u;i is € [0, 1]..
The division of P should obey the following rules:

e similar data should be distributed into similar clus-
ters: homogeneity.

o different data should be separated into different clus-
ters: heterogeneity.

The first step in a mesoscopic analysis could be a
clustering based on a manually designed first-order
classifier. The typical number of clusters in this case
is two. The separating feature is to what extend the
objects have this property.

The second step could be a second-order classifier-
based clustering. The number of clusters now depends
on the internal structure of the population and the
used classifier. The minimum of the objective function

JOV) =30 (uix) * diy (3)

k=11i=1

with d?, the distance between s and the prototype
v; according to the used distance measure is then the
optimal clustering. The distance measure for the fol-
lowing experiments is the Hamming distance, which is
evident because of the binary strings representing the
individuals in the artificial chemistry.

Distance

Classification of a population with a clustering algo-
rithm thus depends crucially on the structure and di-
mension(s) of the sequence space.

The genotypic Hamming distance measures the
number of different bits between two individuals rep-
resented by binary strings. Therefore the clustering
only uses structural information to separate the popu-
lation into different clusters. The use of the genotypic
information only causes in fact a loss of information.

Cluster algorithms using distance measures depend-
ing on both, genotypic and phenotypic information
may be able to better represent the internal struc-
ture of the population. The phenotypic distance be-
tween two individuals could be quantified by taking
their functional behavior into account or by determing
the difference between their fitness values according to
a globally defined fitness function. If this global fit-
ness function changes with an evolving population one
could speak of an environmental distance.

Both phenotypic and environmental distance are still
under investigation. The presented experimental re-
sults used the genotypic distance.

Tracing of Cluster Development

The development of the population could be traced
by analyzing the state after every generation (about
108 reactions). The resulting clusters are represented
by their specific prototype which is analogous to the
center of a cluster in Euclidean space. The relationship
between the segmentation at ¢; and ;41 is determined
by the distances between their prototypes.

An analysis of the development of properties of an
artificial chemistry using the above explained tech-
niques is the main object of the following sections.

Artificial Chemistry

Our mesoscopic analysis method will be applied to a
static and dynamic analysis of an artificial chemistry
(Varela, 1978; Lugowski, 1989; Rasmussen et al., 1990;
Bagley et al., 1992; Bagley and Farmer, 1992; Fontana,
1991; Fontana and Buss, 1994; Th” urk, 1993). Usually,
an artificial chemistry consists of at least two parts: 1.)
a set of objects (molecules, substances) S, 2.) a set of
collision rules. In addition, a simulation of the artificial
chemistry requires a third component: an algorithm,
which models the reaction vessel and is therefore called
reactor algorithm.

In our case the objects are binary strings of fixed
length S = {0,1}3? (Banzhaf, 1993; Banzhaf, 1995).
The collision rules are all second-order catalytic reac-
tions of the form s; + s9 + X —> s1 + s5 + s3, shortly
$1 4+ s9 = s3. All collisions of two objects sq, s will
have a unique outcome s3. Therefore the set of collision
rules can be represented as a function r : S x § — S,
here.

The following reactor algorithm operates on a pop-
ulation P = {s1,..., sy} which is a multiset on S.

Reactor algorithm

1. Initialize the population P with M objects selected
randomly from S.

2. Select two objects s1, s2 from the population P ran-

domly, without removing them.

3. If there exists a reaction s; + s =—> s3 and the fil-

ter condition f(s1, sz, s3) holds, replace a randomly
selected object of the population by s3.

4. Goto step 2.

The filter condition f: S x S x S — {true, false}
is used to introduce elastic collisions easily, without
changing the reaction mechanism. In our case f is

defined as

fi(s1,82,53) = (51 # 52 A s1 # s3) (4)

The reactor algorithm simulates mass-action ki-
netics of second-order catalytic reactions which al-
lows hypercyclic dynamics (Eigen and Schuster, 1979;
May, 1991). For a large population size M the sys-
tem can be modeled by coupled ordinary differential
equations (Hofbauer and Sigmund, 1984; Stadler et al.,
1993).

The following macroscopic measurements are used
in the diagrams:

The diversity is the number of different strings in
P divided by the population size M for normalization.

The productivity is the probability, that a collision
of two strings is reactive, The term collision refers
to one execution of steps (2) and (3) of the reactor
algorithm. A collision is called reactive if a product
s3 1s 1nserted into the population. So, a collision of
two objects s1, s9 is reactive, if a product if defined by
the reaction rule and if the filter condition allows the
insertion of the product.

The innovativity is the probability that a collision
produces an object that is totally new in the system.

As a reaction mechanism we will use the the follow-
ing 32-bit automata reaction.

Automata Reaction

The automata reaction is based on a finite state au-
tomaton which is a mixture of a Turing-machine and
a register machine. It has also been inspired by Hof-
stadter’s (Hofstadter, 1985; Morris, 1989) Typogenet-
ics.

The automata reaction instantiates a determinis-
tic reaction s; + sy == s3, where sy, 59,53 € {0,1}32
In order to calculate the product ss, string s; is folded
into an automaton A;,, which gets sy as an input. The
construction of A,, ensures that the automaton will
halt after a bounded finite number of steps. Because
As, is a deterministic finite automaton, the automata
reaction defines a functions {0,1}3? x {0,1}3? —
{0,1}32.

Figure 2 shows the structure of the automaton. It
contains two 32-bit registers, the IO register and the
operator register. At the beginning operator string
s1 1s written into the operator register and operand s,
into the TO register. The program is generated from
s1 by simply mapping successive 4-bit segments into
instructions. The resulting program is executed se-
quentially, starting with the first instruction. There
are no control statements for loops or jumps in the
instruction set .

Each 32-bit register has a pointer, referring to a bit
location. The IO pointer, referring to a bit #’ in the
1O register and the operator pointer, referring to a
bit b in the operator register. Bit b and ' are inputs to
the ALU. The ALU result is stored at the 1O pointers
location, therefore replacing b'.

Instead of going into more details here we point
the reader to a precise formal specification of the au-
tomata reaction as source code, available from (Dit-
trich, 1997) and a discussion of self-evolution in ar-
tificial chemistries based on the automata reaction in

!'The instruction set used here is ID, MOV, SETP,
TMM, TDIR, UNSETP, CPON, CPOFF, STOP, OR, EQ,
EXOR, EXOR, NOP, ID, AND. The resulting reaction is

usaually called a2-reaction

_ o
p— L
) >Q_E,I!%Zu.n_ i%%u_ a
5| ,0h552282« 6 A=z
B osHFRSE0LET00202
2888988 9988249883+¢
Q| @900 dd d 40 0 OO - - - -
O 0000000 dAdAdA dd -
g
- L
2 >esxcfn5EY E53a o
%00520288 XxOXxXxx0nZ
B oshEcrSoohozlhz2g
2/883g888988898¢88+
0188323008838 94d4d
O/ 000 ococo0oo0odAdAdAdAdA A A -
A P —
— R
ol
o Oﬁ
— i
o o o
— o
- a8 ol I A=
o < o%
o Lo z > > 8 |o
of L9856 .06
o| E > (©) fa) S| [o
= Wmnmozs82-s
— Q ® - |lo
~ wesBoud g =
— 9 g ‘—18
— o
- = <
o — - | Z
- P N’ -9
o o | ©
o . o |
\ B g o
— . ol E= |z
| A2 .88 2le |E -
- 25|12 8/82|8 5|3 =5
ol 2|22l l8L|E2| BT o>
E|I6-|legldx|dl s e)
— = ':},—JE._lo%‘*a [ols
8-|dO|<x|8 =4}
O(ﬁl% g_ﬁu.l S e
- E%_E K=}
“ « - o
o sRsIfal 01u0d %55 o|8
- oD ©
o= Oo>
2B 5218
s &0

Figure 2: Automaton, resulting by folding s;. It carries
out the reaction sy + s5 = s3. s1 1s written into the
operator register and specifies the program. The 10
register is initialized with s; and contains the result s3
after running the program.

(Dittrich and Banzhaf, 1998).
As a short summary the following basic properties
of the automata reaction should be noted:

e The probability is high that a product of a non-
elastic collision is similar to one of the colliding
strings.

e The product of two randomly generated strings s, s9
is likely (p & 30%) equal to sy. This is called pas-
sive replication, because the operator string s;
does not modify the operand string ss.

e A string sy for which Vz € S : s1 + 2 — s7 18
called active replicator, because it copies the op-
erator string (itself) into the TO register. Active self-
replication is rare and has to be evolved during the
development of the population.

The structure of the population thus changes with the
replicating ability of it’s individuals. Passive replica-
tors may survive if the population is small (M <<
1000) but they are displaced if active replicators evolve
during a run. Due to the starting position of the point-
ers during a collision, the center positions of the string
are likely to remain nearly unchanged while the possi-
bility of changing margins is higher.

Application

We will now demonstrate the application of the meso-
scopic analysis method on data obtained from an arti-
ficial chemistry.

Figure 3 shows run A4-23 out of a series of 100
experiments all with the following parameter setting:
population size: M = 10° (constant), reaction: au-
tomata reaction a2, reaction type: catalytic second-
order, filter condition: exact replication disabled (elas-
tic), initialization: random strings (full system seed-
ing). The observed behaviors in the series were very di-
verse ranging from early stabilization with short tran-
sients to complex, oscillating dynamics (Fig. 8). In
(Dittrich and Banzhaf, 1998) we have identified two
different evolutionary phases. The first one 1s char-
acterized by high constructive activity which creates
many new strings per generation. The second evo-
lutionary phase begins with the emergence of a very
stable, self-replicating core-set of cooperating strings
dominating the system. This stable core-set keeps
evolving by detachment of sub reaction pathways, by
integration of totally new molecules or by emergence of
new substrings which proliferate in almost every string.

Here we will concentrate on one phenomenon in run
A4-23: The sudden decrease and sudden increase of

productivity —
diversity ------
N THrovativity =
0.8 fi
0.6
04 +
02 i
0 e e o
0 500 1000 1500 2000 2500

time in generation

Figure 3: Diversity, productivity and innovativity of
experiment A4-23 with the automata reaction a2. Pa-
rameters: M = 100000, reaction a2, no replication, full
system seeding.

productivity around ¢ = 700. The macroscopic ob-
servables in Figure 3 are indicating that something is
happening. But what and why ? In principle we can
reconstruct every single step and thus are able to un-
derstand the phenomenon. But although the interval is
reduced for the analysis to ¢ = 600 - £ = 800 there are
still about 16 * 10% reactive collision events left which
in addition, are very diverse because of the high num-
ber of different string types (31955 different strings at
t = 600).

We start our analysis by asking the question:

(Q1)Does the structure of the population change
from t = 600 to t = 8007

To answer this question we generated automati-
cally (using genetic programming (GP) (Koza, 1992;
Banzhaf et al., 1998)) a first-order classifier C; which
is able to discriminate strings of ¢ = 600 from strings of
t = 800. The training cases for the GP fitness function
where the 400 most frequent strings of each genera-
tions. C1(s) should be 0 if s is a string of gen. 600
and 1 if s is a member of the population at time 800.
The GP system has been used with the following set-
ting: Operator set: conventional boolean functions,
two ADFs (automatically defined functions) allowed.
Random constants out of {0,1,...,32}. (u + A) selec-
tion (Schwefel, 1995) with x4 = 500 (population size)
and A = 350 (number of descendents), finite life span:
5 generations. Program structure: tree and linear.

Among many others GP created a short program
which only tests bit 14 of the input string. Surprisingly
this bit discriminates not only the test cases but nearly
every string in gen. 600 from those in ge. 800. Thus,
with the automatically generated classifier C; we are
able to visualize the moment when the population is
beginning to change its structure (Fig. 4).

09 r
0.8
0.7
0.6
05
04
03

0.2

01

0 . .
600 650 700 750 800
time in generation

Figure 4: Normalized sum of classifier C; over time.

Run A4-23.

0.74

“class3" —
0.73 -

0.72 +
0.71 +
0.7
0.69

0.68

0.67 . . .
600 650 700 750 800
time in generation

Figure 5: Normalized sum of classifier Cy over time
(self-replication ability). Run A4-23.

We have now identified a structural change, but
(Q2) Does the functional property of strings change?
To answer this question we define a first-order clas-

sifier C'y “by hand”:
dHam((S 7 50)7 5) + dem((S @ Sf)’ 8)

64
(5)
where so =0000000 and s; =fHFffff. This classifier es-
timates the self-replicating ability by testing s against
the sq and the s; string. Indeed, figure 5 shows with
the help of Cy that there is a functional change. Now
questions to answer are

(Q3) How is the population structured att = 6007

(Q4) How does the cluster evolve?

The structure of the population in experiment A4-23
at about ¢ = 600 until ¢ = 680 is shown in fig. 6. All
present strings belong to cluster 04111260, so their
genotypic structure is almost the same. There is a
slight increase in volume which indicates that more
and more individuals are replaced by one of the most
frequent 400 strings.

02(8) =1-

N7 N7
675 680

04111260 04111260 04111260 04111260 04111260
N7
665 670

) =z

o &

S :

AN o~

S o 9

g@ © g

) =
S 2
©

N7

610

_/\/

04111260 04111260 04111260 04111260
605

600

Figure 6: Clusterdevelopment of cluster 04111260.
Cluster method: fuzzy c-means. Run A4-23.

4b1432d4

4b1412d6
4p1412d6 ©4bl412d6 Q Q
.
698

Il
T
696

699

4b0112d6

O

I
T
697

Clusterdevel opment
4b0112d6
Time [Generations]

0c211260

I
}
695

0c211260

()
N
6

0c211260

693

O 1

Figure 7: Clusterdevelopment. Clustering performed
on the 400 most frequent strings per generation. 1 cm
diameter & 15% of population. Cluster method: fuzzy
c-means. Run A4-23.

productivity —
diversity ------

08 [!
06 !
04l ¢

0.2

L AV, = A L
0 500 1000 1500 2000 2500 3000 3500 4000
time in generation

0

Figure 8: Diversity, productivity and innovativity of
experiment A4-49 with the automata reaction. Pa-
rameters: M = 100000, reaction a2, no replication,
full system seeding.

Figure 7 shows a second-order cluster analysis of
these 400 most frequent strings from ¢ = 693 to
t = 700, the moment of the supposed restructuring.
At t = 695 the single cluster 0¢211260 (04111260
slightly changed it’s center) splits into two clusters
4b0112d6 and 4b1412d6. The former disappears af-
ter two generations while the latter quickly grows and
changes its center (in ¢ = 699 almost half of the popu-
lation is in 4b1432d4). Analysis shows that the center
of the shrinking cluster has almost the same structure
as in previous generations before but that the second
cluster has an obviously different bit pattern on the
left side. Further development of the remaining clus-
ter shows that now both, individuals with modified
and unmodified left and right sides belong to the same
cluster.

A very interesting experiment was run A4-49. As
shown in fig. 8, there is an oscillating behavior of the
the makroscopic parameters from ¢ = 1000 to ¢ = 2000.
A magnification of the interval from ¢ = 1200 to
t = 1600 is shown in fig. 9. This run is remarkable
because this quite complex behavior is an exception.
Most of the experiments are similar to run A4-23n
about 20% are even simpler. The result of a fol-
lowing cluster analysis is shown in fig. 10. Here an
oscillating separation and merging of two clusters with
stable centers (eel0526a and effff26a) is the domi-
nating phenomenon.

(Qb) Is there a change in the way genotypic infor-
mation is reproduced/conserved ¢

Looking at the clusters obtained from (Q3) and (Q4)
reveals, that strings in the displaced cluster have high
diversity on the left side. Strings in the new cluster are
much more homogeneous on the left side. This raises
the question whether the new cluster has acquired the

1

productivity —
diversity ------ b

0.9 F

0.8

0.7

0.6

05

04

03

0.2

01

Q b B,
1200 1250 1300 13
time in generation

,,,,,,,,,,,

Figure 9: Magnification of the analysis interval for run

A4-49.

effff26a L effff26a
O —
eel0526a eel0526a
1400

eel0526a eel0526a eel0526a eel0526a
1300
Time [Generations]

O effff26a
— O

:\
eel0526a

eel0526a

Cyclic cluster separation and merging

effff26a

5

effff26a;
eel0526a

eel0526a

Figure 10: Time development of clusters eel0526a
and effff26a in run A4-49. 1 cm diameter &~ 20% of
population. Cluster method: fuzzy c-means.

0.9

“class3" —
"class3" ——]

0.85

0.8

0.75

0.7

0.65

0.6

0.55

05 . . .
600 650 700 750 800
time in generation

Figure 11: Normalized sum of classifier Cogoosrsy and
C't o000 over time, which measures the left-oriented
replication and right-oriented replication ability, re-
spectively. Run A4-23.

ability to replicate it’s left side more accurately.

To validate this assumption we have defined a first-
order classifier C;, which checks for replicating activ-
ity at certain bit positions specified by the mask s,,:

dHam(((S © 50) A Sm), s A Sm)
24tones(s)
dHam((S ©® Sf) V —8y,,s8V _‘Sm)

B 2#ones(s) (6)

Cs,. (s)=1 —

where s, € S is a mask and #ones(s) denotes the
number of ones in s. Note, that Cy = C¢ssr777r. The
change of replication from right-oriented to left-and-
right-oriented is shown in figure 11 by showing the de-
velopment of Coggofrrr and Cryyroono-

Discussion

A new mesoscopic step-wise analysis method for evo-
lutive population-based systems has been suggested.
Knowledge about the system is gained by decompos-
ing it with the help of classifiers. The application of
classifiers generates information which can be used to
generate new classifiers which can again be applied to
the system. The concept allows the integration of dif-
ferent automatic and manual analysis techniques.

The method has been successfully applied to an ar-
ticial chemistry. A sudden decrease and increase of a
macroscopic quantity (productivity) has been identi-
fied as the birth of a new organization (cluster). Tts
development has been visualized and investigated by a
dynamic cluster analysis. The resulting clusters mo-
tivated the definition of more specialized classifiers
which confirm the assumption that the new organi-

zation has acquired the ability to replicate the left side
of a string.

Future work: Classifiers can be generated automati-
cally (i.e. Cy), can be parameterized (i.e. Cs_) or can
be combined which can lead quickly to a huge number
of classifiers. To ease the handling of the classifiers we
can assign to each classifier a “meaning” which is a
text describing the properties of the classifier, and set
up a data base containing the classifier name, its for-
mal definition (program) and its meaning (text). With
this we are able to combine and integrate formal de-
scriptions with more intuitive, linguistic descriptions.
In a second step the classifiers can be related to each
other.

If we also allow classifiers to be discarded (i.e. be-
cause they are redundant), the resulting process seems
to become an evolutionary process, now on the level
of classifiers. So, we can apply the same techniques
as described here not only on the primary population
system, but also on the system of evolving classifiers.

Acknowledgements

This project is supported by the DFG (Deutsche
Forschungsgemeinschaft), grant Ba 1042/2-2. We also
thank Christian Duntgen, Ahmet Kog¢, Andre Skusa,
Marcus Brameier and Wolfgang Kantschik.

References

Bacher, J. (1996). Clusteranalyse. Oldenbourg,
Minchen, Wien.

Bagley, R. J. and Farmer, J. D. (1992). Spontaneous
emergence of a metabolism. In Langton, C. G., Tay-
lor, C., Farmer, J. D., and Rasmussen, S., editors,
Proceedings of the Workshop on Artificial Life (AL-
IFE °90), volume b5 of Santa Fe Institute Studies in
the Sciences of Complexity, pages 93-140, Redwood
City, CA, USA. Addison-Wesley.

Bagley, R. J., Farmer, J. D., and Fontana, W. (1992).
Evolution of a metabolism. In Langton, C. G., Tay-
lor, C., Farmer, J. D., and Rasmussen, S., editors,
Proceedings of the Workshop on Artificial Life (AL-
IFE ’90), volume 5 of Santa Fe Institute Studies in
the Sciences of Complexity, pages 141-158, Redwood
City, CA, USA. Addison-Wesley.

Banzhaf, W. (1993). Self-replicating sequences of bi-
nary numbers — foundations 1 and ii: General and
strings of length n = 4. Biological Cybernetics,
69:269-281.

Banzhaf, W. (1995). Self-organizing algorithms de-
rived from rna interaction. In Banzhaf, W. and Eeck-
man, F. H., editors, Fvolution and Biocomputation:

Computational Models of Ewvolution, pages 69-102.
Springer, Berlin-Heidelberg-New York.

Banzhaf, W. (1997). Interactive evolution. In B”ack,
T., Fogel, D. B., and Michalewicz, Z., editors, Hand-
book of Fvolutionary Computation. IOP Publishing.

Banzhaf, W., Nordin, P., Keller, R. E., and Francone,
F. D. (1998). Genetic Programming - An Introduc-
tion. Morgan Kaufmann and dounkt Verlag.

Dittrich, P. (1997). Source code of the automata re-
action. Internet FTP server at the Chair of Systems
Analysis, Dept. of Comp. Science, Univ. of Dortmund,
file name: autoreac-1.0.tar.gz.

Dittrich, P. and Banzhaf, W. (1998). Self-evolution
in a constructive binary string system. submitted to
Artificial Life Journal.

Dunn, J. C. (1974). Well separated clusters and op-
timal fuzzy-partitions. Journal of Cybernetics, 4:95 —
104.

Eigen, M. and Schuster, P. (1979). The Hypercycle.
Springer, Berlin.

Fontana, W. (1991). Algorithmic chemistry. In Lang-
ton, C. G., Taylor, C., Farmer, J. D., and Rasmussen,
S., editors, Artificial Life II: Proceedings of the Second
Artificial Life Workshop, pages 159-209. Addison-
Wesley, Reading MA.

Fontana, W. and Buss, L. W. (1994). ”"the arrival of
the fittest”: Toward a theory of biological organisa-
tion. Bull. Math. Biol., 56:1-64.

Hofbauer, J. and Sigmund, K. (1984). Evolutionsthe-
orie und dynamische Systeme. Paul Parey, Berlin.

Hofstadter, D. R. (1985). G”odel, FEscher, Bach:.
Klett-Cotta, Originalausgabe: 1979, Basic Books,
New York, 6. edition.

Koza, J. R. (1992). Genetic Programming: On
the Programming of Computers by Natural Selection.
MIT Press, Cambridge, MA, USA.

Lugowski, M. W. (1989). Computational metabolism:
Towards biological geometries for computing. In
Langton, C. G., editor, Artificial Life, pages 341-368.
Addison-Wesley.

May, R. M. (1991). Hypercycles spring to life. Nature,
353:607-608.

Miyamoto, S. and Nakayama, K. (1986). Similarity
measures based on a fuzzy set model and application
to hieracical clustering. IEEE Trans., Syst., Man and
Cybernetics, 16(3):479-482.

Morris, H. C. (1989). Typogenetics: A logic for ar-
tificial life. In Langton, C. G., editor, Artificial Life,
pages 369-395. Addison-Wesley.

Rasmussen, S., Knudsen, C., Feldberg, R., and Hind-
sholm, M. (1990). The coreworld: Emergence and
evolution of cooperative structures in a computational
chemistry. Physica D, 42:111-194.

Schwefel, H.-P. (1995). Evolution and Optimum Seek-
ing. Sixth-Generation Computer Technology Series.
John Wiley & Sons, Inc., New York.

Stadler, P. F.; Fontana, W., and Miller, J. H. (1993).
Random catalytic reaction networks. Physica D,

63:378-392.

Th”urk, M. (1993). Ein Modell zur Selbstorganisation
von Automatenalgorithmen zum Studium molekularer
Fvolution. PhD thesis, Universit” at Jena, Naturwis-
senschaftliche Fakult”at.

Varela, F. (1978). On being autonomous: The lessons
of natural history for systems theory. In Klir, G.,
editor, Applied General Systems Research, pages 77—
84.

