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We examine a simple system of competing and cooperating entities in terms of the speed of settling
their competition. It turns out that the larger the degree of cooperativity among entities the quicker the
competition is decided. This result, derived in a simple artificial chemistry system, demonstrates that
cooperativity is a decisive element of a world of entities competing for resources. It also hints at the fact
that growth of complexity (in terms of increasing cooperativity) is a native tendency of such a world.
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1 Introduction

Artificial Chemistries (ACs) are model systems for
the study of phenomena in, among other fields,
Physics, Chemistry, Biology, Economy and Sociol-
ogy [1]. They make use of the fact that, in computer
simulations, one is free to define arbitrary inter-
action rules between objects of arbitrary behavior.
Thus, it is possible to define, for instance, algorith-
mic ”atoms” and their interaction rules for the pur-
pose of studying one specific question in simulation,
such as their bonding behavior when equipped with
an interaction force alternative to what is presently
considered in physics.

The entities of ACs might be quite complicated,
allowing them to play the role of, e.g., agents in a
multi-agent system for the study of social questions.
Whereas in multi-agent systems the emphasis lies
in studying individual behavior of agents, ACs are
used to draw conclusions about collective behavior.
In the case of a social simulation, for instance, en-
tities might be equipped with adaptive capabilities
like learning, allowing them to be influenced by col-
lective phenomena that appear on a mesoscopic or
macroscopic level. This makes them an ideal tool
to examine complex systems. In the context of this

paper, we define complex systems by the existence
of feedback loops from the emergent levels of system
behavior back to the ”atomic” level of the system’s
defining entities. The existence of this feedback be-
tween levels (there might be more than two levels)
often renders analytical approaches powerless since
the degree of non-linearity of such systems is enor-
mous.

There are notable exceptions from this inability
to treat systems analytically. Synergetics [2, 3] has
devoted most of its efforts to studying complex sys-
tems which show regularities in their behavior that
can be derived from certain assumptions about the
interaction between levels. The slaving principle
is a typical example of a concept developed when
studying the feedback between physical entities and
their collective state, e.g., excited atoms and the ra-
diation in a laser system [4]. Being able to treat
systems analytically comes at a price, however. It
requires that the entities are relatively simple be-
haved, such as atoms, and that the feedback be-
tween levels is relatively simple, like inhibitory or
excitatory. As soon as combinatorics comes into
play when defining the interaction between entities,
as it is the case in, e.g., Chemistry, the feedback
between levels is not easily derived and surprising
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effects might happen. It is at this stage of things be-
coming complicated that ACs come into their own.

As a simulation tool, ACs cannot substitute for
analytical treatment, however, and some connection
between the two approaches must be maintained if
one is to learn from AC models. In a large class of
ACs, this is the case, and systems of coupled non-
linear differential equations, to name one prominent
method, can be used to predict the behavior of
a simulation very well. Though this capability is
restricted to low-dimensional models, it neverthe-
less provides a valuable bridge between traditional
methods and this new approach.

One last aspect deserves mentioning, although we
cannot elaborate on this aspect in the model system
below. It is the aspect of ”constructivity” of ACs
and many natural systems. Whereas Synergetics as-
sumes the entities as given, and their interaction as
fixed, ACs are able to work up the dynamics of a sys-
tem from the point of a seed system with only a few
entities. It can be said that, in the course of their
dynamics, the systems construct themselves. For
instance, ACs have no difficulty in allowing new en-
tities encountered never before into the system and
participating in the dynamics. By the new entries,
new interactions might come into play that, again,
were encountered never before. This way, systems
of growing complexity can be simulated and conclu-
sions can be drawn from their behavior. Many nat-
ural systems are constructive, e.g. elementary par-
ticle physics, chemistry, ecosystems, development of
organisms, societies. The field of constructive sys-
tems is just in its beginnings and we shall therefore
refrain from discussing it in more detail here.

The question we want to approach with the model
introduced here is the following: How does the dy-
namics of a competitive system change if coopera-
tive interactions are added to the competitive inter-
actions. This question is of interest since it might
help to explain the development of cooperation be-
tween entities. In the light of the aforementioned
self-construction of systems, cooperation is the pre-
condition for the transition to higher levels of com-
plexity in a system, and thus of growing complexity
of a qualitative type.

The paper is organized as follows: Sec 2 will in-

troduce the model and its analytical counterpart,
Sec 3 will show simulation results, Sec 4 connects
to the behavior of the differential equation system.
Sec 5 puts the behavior into context and draws con-
clusions.

2 The Model

Following [1] we define an artificial chemistry by in-
troducing its objects and their interaction and by
determining the dynamics of the system. Here, our
entities are objects of N non-combinatorial types
(types) si, i = 1, ..., N which interact catalytically
when encountering each other. The fact that ob-
jects are non-combinatorial allows us to connect the
dynamics to the more traditional method of coupled
differential equations. An interaction between ob-
jects can be written down in a chemical description
as

si + sj + [X] → si + sj + sk . (1)

The notion is that, once two objects encounter
each other, they produce a third object under the
assumption that the consumption of energy and ma-
terial ([X]) both can be neglected. Interactions take
place in a continuously-stirred reaction vessel of fi-
nite size M . Thus, in order to avoid an increase in
the number of objects, each time a new object is
produced another object will be removed from the
vessel. This defines the dynamics and results in a
continuous flow out of the reactor.

In order to fix the interaction between objects, a
reaction matrix Ri,j can be defined that determines
which objects are produced (entries in the matrix)
upon the collision of which entities (columns and
rows of the matrix, see equ. 3). An equivalent for-
mulation is a three-dimensional matrix Wi,j,k which
assumes only two values, ”1” if k is produced by the
interaction of i, j, ”0” if this is not the case.

Matrix W is useful in a rate equation description
of the system. For this purpose we must assume
that a very large number of copies of each species
si, i = 1, ..., N is present in the reaction vessel. The
large number of objects allows to neglect random
fluctuations that come about by the order in which
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reactions happen in the vessel or by the possibly low
numbers of copies of a species leading to extinction
events. The rate equation model for the system can
be written down as follows:

dxi

dt
=

N∑

j,k=1

Wijkxjxk − Φxi , i = 1, . . . , N. (2)

where the flow term with Φ ensures that the sum
of concentrations remains 1. These equations can
be solved numerically, and describe the system de-
terministically. If care is taken (sufficiently small
numerical constants for integration), both methods,
explicit simulation of the AC and numerical solution
of its rate-equation solution should converge to the
same answers.

For the purpose of this contribution we shall con-
sider N = 7 different types of objects. Figure 1 (a-l)
is a visualization of the interaction between object
types. Mathematically, these graphs correspond to
reaction matrices. For instance, the reaction matrix
corresponding to the situation of Figure 1(f) can be
written as




1 0 3 0 0 0 0
1 2 0 0 0 0 0
0 2 3 0 0 0 0
0 0 0 4 5 0 0
0 0 0 4 5 0 0
0 0 0 0 0 6 0
0 0 0 0 0 0 7




. (3)

What we are interested in is the comparative dy-
namical development of these systems with a differ-
ent degree of competition and cooperation. While
the first model basically contains autocatalytic re-
actions (each type produces itself only), larger and
larger numbers of interactions are cooperative in the
sequence of models. So we have 7, 6, 5, 4, 3, 2 com-
petitions with a corresponding growing number of
cooperative interactions.

3 Behavior of the Model

Given a set of N = 104 objects of the different types,
what is the behavior of the model? Figure 2 shows
a typical example of the development of concentra-
tions over time. As can be seen, the dynamics is
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FIG. 1. Competition of 7 types of entities. (a) Each
entity is autocatalytic only and competes with all others
for resources; (b) Two entities are supporting each other
and compete as a pair, all others are pure autocatalysts;
(c) Two groups of entities support each other; (d) three
groups of two entities each and one autocatalyst.
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FIG. 1. (e) A larger group of three entities supports itself
in cyclic fashion, 4 autocatalysts compete; (f) a group of
three, one of two and two autocatalysts; (g) two groups
of 2 and one group of three compete; (h) two groups of
three each, and one autocatalyst.

indeed competitive and one entity (or a collective)
achieves full concentration in the reactor. The non-
linear reactions between types, together with the
flux term allow for no other solution. Note that
in the case of a collective winning the competition
there is a continued shift in concentrations between
the participating types (see Figure 3). This shift is
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FIG. 1. (i) One group of four entities competes with
three autocatalysts; (j) one group of four, one group of
two and an autocatalyst compete; (k) a group of four
competes against a group of three.

mostly triggered by fluctuations in concentrations,
and is less emphasized in a reactor with more ob-
jects.
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FIG. 2. Typical concentration development in a simu-
lation with 104 objects in the reactor. Competition of
Figure 1(a). Largest concentration at the outset wins
competition.

We shall now compare different degrees of coop-
eration/competition in terms of the speed of settle-
ment of the competition . For this purpose we need
a termination criterion for competitions [5]. We de-
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FIG. 3. Typical concentration development in a simu-
lation with 104 objects in the reactor. Competition of
Figure 1(l). The collective of 4 cooperating entities wins
competition.

fine xL as the concentration of all losing entities iL,
lumped together,

xL =
∑

iL

xiL ∀iL (4)

Applying the following criterion:

xL ≤ 10−2 (5)

we can measure the number of iterations necessary
for termination to occur. This number can be com-
pared for various interaction types (see Figure 1 (a-
l)) and averaged over many different initial condi-
tions.

Figure 4 shows a sample run clearly exhibiting
different speed of competition until settlement for a
specific initial condition. Table 1 lists the average
number of iterations until settlement for the various
situations of Figure 1, together with the number of
competitive and cooperative interactions present in
those situations.

The general tendency of the dynamics can be read
off from Table 1. As soon as cooperation comes into
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FIG. 4. Comparison of settlement speed in a typical sim-
ulation run with 104 objects in the reactor. Competition
of dynamics of Figure 1(a) (x1a, x2a, x3a) vs. dynamics
of Figure 1(b) (x1b, x2b, x3b). The collective of 2 cooper-
ating entities wins competition much earlier.

Figure Comp Coop Iterations Std. Dev.
1a 7 0 39,2 3.4
1b 6 1 10.0 0.0
1c 5 2 18.1 1.4
1d 4 4 21.7 2.4
1e 5 3 12.0 0.2
1f 4 5 14.0 0.0
1g 3 7 24.9 4.7
1h 3 6 25.9 3.4
1i 4 4 12.7 0.5
1j 3 6 22.2 2.3
1k 2 8 70.3 16.7
1l 2 7 26.5 2.6

Table 1. Comparison of the computational costs for 100
runs in each configuration of Fig 1 (a-l). Average and
std. deviation of number of iteration steps given. Comp:
Number of competitions; Coop: Number of cooperations.

play, the dynamics settles faster. There is one ex-
ception, which is due to an artefact. The situation
of Figure 1 (k) takes more time to settle, because
there is an intermediate state of the system where

concentrations are high in species 5 to 7. This later
(in iteration 70, on average) develops into a sin-
gle species assuming concentration 1. One can also
notice that configurations settle even more quickly
than others. There are basically two causes here
for the difference: (i) the number of competitions
and cooperations in a configuration, (ii) the differ-
ence between the winning and loosing parts of the
species population at the outset. This latter rea-
son causes a quicker settlement of the dynamics the
larger the difference at the outset. Thus, configura-
tions of Figure 1(b), (e) and (i) have an advantage.

FIG. 5. Comparison of dynamics for Figure 1(l) with a
reactor of M = 104 objects and rate equations.

The differential equation system of eqns. (2) can
be integrated numerically. Figure 5 shows an over-
lay of the same situation for the dynamics of a dis-
crete simulation and a direct numerical integration.
It turns out that there is good coincidence between
the two methods. This had been observed in other
models of similar type in the past [6].

4 Consequences

We have seen that in our model world the degree
of cooperation or mutualism influences the speed of
the decision dynamics. It might not be far-fetched
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to suspect that similar mechanisms are at work in
the natural world. There, we observe an increasing
degree of cooperativity (above the level of replica-
tors). Due to the fact that new entities emerge by
the cooperation of lower-level entities, it can be said
that cooperation fosters the construction of hierar-
chies within a system, and thus enables the growth
of complexity. In other words, the development of
cooperative interaction adds a competitive edge to
the participating units and accelerates competition
dynamics with others. In this way not only hierar-
chies are constructed, but the dynamical evolution
of the system accelerates.

The emergence of hierarchies can indeed be ob-
served by the spread in time scales of development
in a system. Hierarchical levels are, among other
things, differentiated by the speed by which they
undergo changes. As long as there are more or less
the same time scales of change for entities, we can-
not speak of different levels of a hierarchy. Once
a separation in time scales occurs, with the lower
level of the hierarchy developing slower than the
higher level (this reflects the fact of acceleration)
levels have separated.

It is interesting to note that in artificial systems,
the formation of hierarchical levels can be enforced
by determining the time scale of change of entities
at the different levels. There, two alternative ap-
proaches are available: (i) either one can acceler-
ate the dynamics of change at the higher level, or
(ii) one can slow down the dynamics of change at
the lower level [7]. In biological systems both ap-
proaches have been adopted by Nature. The evo-
lution of the genetic code [8] has virtually come to
a stand-still (some researchers even stated it would
be frozen [9]) in order to allow higher levels of the
evolutionary hierarchy to rely on it. At the level
of genomes a number of repair mechanisms are em-
ployed by organisms to ensure robustness against
copy errors for DNA [10]. This way Nature solidified
the separation of hierarchical levels in the respective
systems. Once the speed of change has been mini-
mized at the lowest level, however, only acceleration
at higher levels allows to build further hierarchical
levels. It might be ventured that this is the rea-
son we observe acceleration with the emergence of

further hierarchical levels.
To put these results into perspective: H.A.Simon

has pointed out [11, 12], that hierarchies are
strongly correlated with modularity, and modular-
ity or (near-) decomposability with speed of evolu-
tion. The more hierarchic a system is, (a) the bet-
ter it can absorb perturbations and (b) the faster
it can evolve. The former aspect has a long tra-
dition and has been recently examined in a simple
model ecosystem [13] where it was shown that ro-
bustness increases with the degree of mutualism. A
biological result to the same effect has been demon-
strated earlier [15]: there it has been shown that,
upon transition to mutualism, evolutionary change
can accelerate without harming the organisms. The
latter aspect is perhaps less well-known in the com-
munity.

5 Summary and Conclusion

We have shown that a very simple system of in-
teracting entities suffices to demonstrate accelera-
tion effects of a dynamics equipped with cooperative
interactions. Besides autocatalytic interactions, a
number of different dynamics have been examined
in a system with 7 different types of objects. The
general tendency was an increase in the settlement
speed for competition due to the fact that more en-
tities of the ”universe” were involved per competi-
tion.

It was pointed out that this result is in line with
observations both from the non-living and living
natural world.
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