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Self-Modifying Cartesian Genetic Programming
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4.1 Introduction

In some forms of genetic programming there is little distinction between genotype
and phenotype. For instance, in tree-based GP [11], the genotype is a LISP expres-
sion representing a compilable LISP program, which is the phenotype. In biology,
the genotype is the genetic instructions encoded in the DNA of each cell, while the
phenotype is generally considered to be the physical form of the organism. This
should not be confused with the behaviour of the organism. As we have seen in
Chap. 2, in CGP the distinction between genotype and phenotype is much more
explicit, since the genotype is decoded to a more compact form, which is the phe-
notype. In the decoding process, genetic instructions may be ignored, since they
are not referred to in the mapping from program inputs to outputs. We have also
seen that the presence of these ‘junk’ genes is highly beneficial to the evolutionary
process (see Sect. 2.7).

Turning our attention to biology we see that in many cases (if not all), time is an
essential part of the genotype–phenotype mapping. This is perhaps clearest when
we consider the development of multicellular organisms. In these systems, the ‘dis-
tance’ between the genotype and the phenotype is enormous, as there may be a
large number of cells in a phenotype. Thus, the phenotype is constructed over time,
through the interaction of the genotype and the environment. Including the notion
of time in the genotype–phenotype mapping may be beneficial [1].

Self-modifying Cartesian genetic programming (SMCGP) has included time by
allowing new kinds of functions into the genotype. These are self-modification (SM)
functions, i.e. instructions that cause alteration of the code itself. When these SM
functions are obeyed, the genotype changes into a new form (i.e. develops into a
new phenotype). The new phenotype can also contain SM functions, so that when
these are obeyed, a further phenotype can be created. As we will see, we refer to
each of these phases of obeying SM instructions as an ‘iteration’.
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Another aspect of biological cells is that they are responsive to an arbitrary num-
ber of inputs. So, in addition to time, we have also introduced into CGP functions
that acquire program inputs and outputs. When used in concert with SM functions,
these allow SMCGP programs to acquire more inputs and deliver more outputs.
These two new features allow the possibility of CGP being able to find general
solutions to problems. For instance, in CGP one can attempt to solve a particular
parity problem, that is, one with a given number of inputs, whereas SMCGP allows
the possibility of evolving a program which – when iterated – produces an infinite
sequence of parity functions, each one having one more input than in the previous
iteration. Further to this, it has already been shown that SMCGP genotypes can prov-
ably produce general solutions to a number of problems (e.g. parity, binary addition,
and computing pi and e) [6, 7].

4.1.1 Discovering Mathematical Results Using Genetic
Programming

Evolving provable mathematical results is a rarity in evolutionary computation.
Streeter and Becker used tree-based GP to discover mathematical approximations
to well-known mathematical series such as the harmonic series and also new Padé
approximations to mathematical functions [20]. Although these were interesting for-
mulae, they did not find exact analytical results that could be shown to converge in
the limit, but they noted that finding such results would be a ‘striking and exciting
application of genetic programming’.

Schmidt and Lipson used GP to discover the known Hamiltonians and La-
grangians of mechanical systems purely by using GP symbolic regression tech-
niques on data acquired through motion tracking [16]. Schmidt and Lipson also
investigated using GP to solve iterated function problems (i.e. f ( f (x)) = g(x)) and
showed that one evolved function provably made f ( f (x)) converge to x2 −2 in the
limit [17].

Spector et al. showed that GP could be used to evolve hitherto unknown algebraic
expressions that are important in the mathematics of finite algebras and are orders of
magnitude shorter than those that could be produced by prior mathematical methods
[18].

SMCGP has been able to find exact analytical results. In [6, 7], it has been shown
that mathematical functions have been evolved that converge rapidly to pi and e in
the limit of large iterations.

4.2 Overview of Self-Modification

Procedure 4.1 gives a high-level overview of the process of mapping a genotype to a
phenotype in SMCGP. The first stage of the mapping is the modification of the geno-
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type. This happens through the use of evolutionary operators acting on the genotype.
The developmental steps in the mapping are outlined in lines 3–8 of the algorithm.
The first step is to make an exact copy of the genotype and call it the phenotype
at iteration 0. After this, the self-modification operators are applied to produce the
phenotype at the next iteration. Development stops when either a predefined iter-
ation limit is achieved or it turns out that the phenotype has no self-modification
operations that are active.

At each increment, the phenotype is evaluated and its fitness calculated. The un-
derlying assumption here is that one is trying to solve a series of computational
problems, rather than a single instance as is usual in GP. For instance, this might
be a series of parity functions, ever-closer approximations to pi, or the natural num-
bers of the Fibonacci sequence. If the problem, however, has only a single instance
(i.e. a classification problem), we can take a fixed number of iterations (either a
user-defined parameter or evolved) and evaluate the single phenotype. Another pos-
sibility would be to iterate until no self-modification rules are active.1

It is important to note that there are various ways in which there may be no active
self-modification operations. Firstly, no self-modification operations may exist in
the phenotype. Secondly, self-modification operations may be present but be non-
coding. Thirdly, the self-modification operations may not be ‘activated’ when the
instructions encoded in the phenotype are executed. These various conditions will
be discussed in the detailed description in the following sections.

Procedure 4.1 Overview of genotype, phenotype and development
1: Generate genotype
2: Copy genotype to phenotype. Iteration, i = 0
3: repeat
4: Apply self-modification operations to phenotype i
5: increment i
6: Calculate fitness increment, fi

7: until ((i equals number of iterations required) OR (No self-modification functions to do))
8: Evaluate phenotype fitness F from fitness increments, fi

4.3 SMCGP and Its Relation to CGP

The genetic representation in SMCGP has much in common with the representation
used in CGP. The genotype encodes a graph (usually acyclic) that includes a list of
node functions used and their connections. The arity of all functions is chosen to be
equal to that of the largest-arity function in the function set. So, as in CGP, functions
of lower arity ignore extraneous inputs. However, there are important differences.

1 This has not been investigated, but is likely to be problematic as the number of iterations could
be very large.
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Firstly, SMCGP genotypes represent a linear string of nodes. That is to say, only
one row of nodes is used (in contrast to CGP, which can have a rectangular grid
of nodes). Other important differences are discussed in the following sections. The
evolutionary algorithm that we have used with SMCGP was the 1 + 4 evolutionary
strategy which is detailed in Sect. 2.6.3.

4.3.1 Self-Modification Operators

The most significant difference is the addition of self-modification (SM) operators
to the function set. These operators can be used in the genotype in the same man-
ner as the more conventional computational operators, but at run time they provide
different functionality. When the SMCGP phenotype is run, the nodes in the graph
are parsed in a similar way to CGP. The graph is executed recursively by following
nodes from the output nodes to the terminals (inputs). When computational func-
tions are called, then – as usual – they operate on the data coming into the node.

When an SM node is called, the process changes slightly. If an SM node is ‘ac-
tivated’; then its self-modification instructions are added to a list of pending ma-
nipulations which is called the To-Do list. The modifications in this list are then
performed between iterations. Note that SM active instructions are added to the To-
Do list in a left-to-right traversal of the encoded graph. It was decided that SM nodes
should be activated in a way that is dependent on the data presented to them. If the
non-SM functions were all numerical functions in nature, SM nodes are activated
when the first input is greater than the second.

When solely Boolean functions are used, SM nodes are always considered to be
activated.2 The size of the To-Do list is chosen by the user. This importance of this
is discussed further in Sect. 4.3.7.

Many SM operators are imaginable, and Table 4.1 lists the currently available
operators. In the table, we can see that the operators also require arguments. These
come from the genotype and are described in Sect. 4.3.3. It is also worth noting that
the indices for SM operations are defined relative to the current node. This relative
addressing is a fundamental part of SMCGP and is discussed in Sect. 4.3.4.

Clearly, Table 4.1 lists many functions! One of the important unresolved issues
in SMCGP is deciding on a minimal SM function set.

4.3.2 Computational Functions

The computational functions used in SMCGP are typical of such functions in GP in
general; however, some functions are particular to SMCGP. A nominal list of func-

2 This is an implementation convenience that stems from the parallel implementation, where mul-
tiple bits are packed into a single word. This makes it less obvious what an analogous activation
operation to that used with numerical functions should be.



4 Self-Modifying Cartesian Genetic Programming 105

Table 4.1 Definition of the self-modification functions. Pi are the evolved arguments of the self-
modification functions; x represents the absolute position of the node in the graph, where the left-
most node has position 0; and ci j is the jth connection gene on the node at position i

Basic
Delete (DEL) Delete the nodes between (P0 + x) and (P0 + x+P1).
Add (ADD) Add P1 new random nodes after (P0 + x).
Move (MOV) Move the nodes between (P0 + x) and (P0 + x +P1) and in-

sert after (P0 + x+P2).
Duplication

Overwrite (OVR) Copy the nodes between (P0 + x) and (P0 + x + P1) to po-
sition (P0 + x + P2), replacing existing nodes in the target
position.

Duplication (DUP) Copy the nodes between (P0 +x) and (P0 +x+P1) and insert
after (P0 + x+P2).

Duplicate preserving connec-
tions (DU2)

Copy the nodes between (P0) and (P0 +P1) and insert after
(P0 +P2).

Duplicate preserving connec-
tions (DU3)

Copy the nodes between (P0 +x) and (P0 +x+P1) and insert
after (P0 + x + P2). When copying, this function modifies
the ci j of the copied nodes so that they continue to point to
the original nodes.

Duplicate and scale addresses
(DU4)

Starting from position (P0 + x) copy (P1) nodes and insert
after the node at position (P0 +x+P1). During the copy, the
ci j of copied nodes are multiplied by P2.

Copy to stop (COPY-
TOSTOP)

Copy from x to the next COPYTOSTOP or STOP function
node, or the end of the graph. Nodes are inserted at the
position the operator stops at.

Stop marker (STOP) Marks the end of a COPYTOSTOP section.
Connection modification

Shift connections (SHIFT-
CONNECTION)

Starting at node index (P0 + x), add P2 to the values of the
ci j of next P1 nodes.

Shift connections 2 (MULT-
CONNECTION)

Starting at node index (P0 + x), multiply the ci j of the next
P1 nodes by P2.

Change connection (CHC) Change the (P1 mod 3)th connection of node P0 to P2.
Function modification

Change function (CHF) Change the function of node P0 to the function associated
with P1.

Change argument (CHP) Change the (P1 mod 3)th argument of node P0 to P2.
Miscellaneous

Flush (FLR) Clears the contents of the To-Do list

tions is provided in Table 4.2. A node CONST returns the first argument supplied to
it. Using CONST in the function set obviates the need to have terminals providing
constants (as is typical in GP). INDX outputs the position of the node in the SMCGP
graph where nodes are numbered sequentially from the left, with the leftmost node
being 0. INCOUNT returns the number of inputs are available to the program.
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Table 4.2 Nominal computational functions. This assumes that all nodes are supplied with two
inputs, a and b. Functions are protected from invalid input values where necessary

Function Operation
NOP No operation

DADD a+b
DSUB a−b

DMULT a×b
DDIV a/b

CONST constant (defined by P0)
AVG (a+b)/2

DSQRT
√

a
DRCP 1/

√
a

DABS |a|
TANH tanh(a)

TANH2 tanh(a+b)
FACT !a
POW ab

COS cos(a)
SIN sin(a)
MIN min(a,b)
MAX max(a,b)
IFLTE if (a < 0) return b, else 0
INDX current node index

INCOUNT number of inputs

4.3.3 Arguments

Each node in the SMCGP genotype contains three floating-point numbers. These
numbers are evolved and are used in several ways by the SMCGP phenotype. The
SM functions require several arguments to specify how graph modifications are to
be carried out (see Table 4.1). These arguments are simply numbers, and their values
are taken from the node’s arguments. As the SM function arguments have to be in-
tegers, the values are truncated. However, as we saw, the arguments are also used by
the CONST function. This allows SMCGP to evolve programs that contain numer-
ical constants thus giving the program access to an arbitrary number of numerical
constants. The arguments can take any value; however, when they are interpreted as
parameters for self-modifying operations, values that are too large will be truncated
to within the range of allowed offsets.

During iteration of the genotype, the arguments can be altered by the SM func-
tion CHP (‘change parameter’). This, in principle, allows storing of the state (i.e.
a memory), since a phenotype could pass information to the phenotype at the next
iteration through a collection of constant values.
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4.3.4 Relative Addressing

The SM operators’ ability to move, delete and duplicate sections of the graph means
that the classical CGP approach of labelling nodes becomes cumbersome. Classical
CGP uses absolute addressing, so that each node has an address and nodes refer-
ence each other using these addresses (this is what connection genes are – see Sect.
2.2). In SMCGP, the structure of the phenotype program is dynamic, and to use
this approach would require significant overhead in relabelling the graph at each
iteration.

To simplify the representation, we therefore replace the fixed addresses with rel-
ative addresses. Now, instead of a node containing an absolute address of another
node, it specifies how many nodes back from its position are required to make a
connection. The connections in the genotype are now defined as positive integers
that are greater than 0 (which prevents cycles). It is worth noting that classical CGP
could easily have chosen this method of addressing and indeed it might have ad-
vantages in embedded CGP, since it could avoid the need to readdress the CGP
fragments inside modules (see Sect. 3.2.2.1).

When the graph is run, the interpreter can calculate where a node gets its input
values from by just subtracting the connection value from the current address of the
node. If the node addresses a value that is not in the graph (i.e. connects too far
back), then a default value is returned (in the case of numeric applications this is 0).

The arguments of SM operators are also defined relative to the current node (see
Table 4.1). The relative addressing allows subgraphs to be placed or duplicated in
the graph whilst retaining their semantic validity. This means that subgraphs could
represent the same subfunction, but act on different inputs. This can be done without
recalculating any node addresses, thus maintaining validity of the whole graph. So
subgraphs can be used as functions in the sense of the ADFs of standard GP.

4.3.5 Input and Output Nodes

Most, if not all, genetic programming implementations have a fixed number of in-
puts. This certainly makes sense when there is a constant or bounded number of
inputs over the lifetime of a program. However, it does prevent the program from
scaling to larger problem sizes by increasing the number of inputs it uses – and this
in turn may prevent general solutions from being found.

Similarly, most GP has a fixed number of outputs. In tree-based GP, there is typi-
cally a single output. In classical CGP, a number of input nodes are placed at one end
of the graph, and these are used as the starting point for the recursive interpretation
of the program.

To allow an arbitrary number of inputs and outputs, SMCGP introduces several
new functions into the basic function set. These are shown in Table 4.3.

The interpreter now keeps track of an input pointer, which points to a particular
input in the array of input values. Calling the function INP returns the value that
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Table 4.3 Input and output functions. P0 is the first argument gene

Function Operation
INP Return input pointed to by current input,

increment current input
INPP Return input pointed to by current input,

decrement current input
SKIPINP Return input pointed to by current input,

current input = current input + P0
OUTPUT Return data provided

the pointer is currently on, and then moves the pointer to the next value. When the
pointer runs out of inputs, it resets to the first input. Similarly, the INPP function
returns an input but then moves the pointer to the previous value. Sometimes it may
not be convenient or useful to move by only one input at a time. The SKIPINP
function therefore moves the pointer a number of places (specified by truncating the
first floating-point argument in the node), and then returns that input.

By duplicating INP, INPP and SKIP nodes, the SMCGP phenotypes can acquire
more inputs when they are iterated.

Variable numbers of outputs are handled using a similar strategy. A function
OUTPUT allows the interpreter to find which nodes to use as output nodes at run
time. Again, the location and number of OUTPUT nodes can change over the run
time of a program. When the graph is run, the interpreter starts at the beginning
of the graph and iterates over the nodes until it finds the appropriate number of
OUTPUT nodes. It then evaluates (recursively) from these nodes.

For the outputs, the interpreter has features that allow it to cope when the number
of OUTPUT nodes is different from the required number of outputs. If there are
more OUTPUT nodes found than are needed, the excess nodes are simply ignored.
If there are too few (or none) the interpreter starts using nodes from the end of the
graph as outputs. This ensures that programs (of sufficient size) are always ‘viable’.

4.3.6 A Simple Example

An example genotype is given in Fig. 4.1. The figure also shows, purely schemati-
cally, some phenotypes arising at different iterations.

4.3.7 Discussion

The length of the To-Do list is an important parameter in SMCGP. If it is chosen to
be a large value, it can allow phenotypes to grow rapidly in subsequent iterations.
In most experiments conducted so far (see [6]), the length of the list has been kept
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Fig. 4.1 The genotype maps directly to the initial graph of the phenotype. The genes control the
number of nodes and the type and connectivity of each of the nodes. The phenotype graph is then
iterated to perform computation and produce subsequent graphs. Function genes are denoted by F,
connection genes by C and argument genes by Pi. The nodes in the phenotype that act as outputs
are outlined.

no larger than two. At present, it is not known how the choice of this parameter
affects the efficiency of the evolutionary search. When the length of the To-Do list
is greater than one, the programs encoded in the phenotype become very difficult
to understand, and so far it has only been possible to supply formal proofs of the
generality of solutions when the length is one.

Another issue worthy of discussion is deciding when to apply SM operations. At
present, they are added to a To-Do list and the SM instructions are carried out one by
one until the end of the list is reached, thus producing a new phenotype. Indeed, this
is what we mean by an iteration of the phenotype. However, another approach could
be to carry out SM operations singly, producing a new phenotype each time, which
could be evaluated in some way. This would be a more continuous form of operation
and it could, at least in principle, allow more opportunities to assess the fitness of
the genotype. This is effectively what happens when the length of the To-Do list is
one.

At present, SM functions are mixed in the genotype with computational func-
tions; thus they must act on numerical inputs. At present, we have given them pas-
sive computational roles (i.e. pass the second input). In principle, one could envis-
age a separation of the two aspects of computation and self-modification and in-
troduce two separate chromosomes: a computational chromosome (CC) and a self-
modification chromosome (SC). The SC would act on the CC to produce a new
computational phenotype. This would be one iteration. Then, at the next iteration,
the SC would be applied to the phenotype, and so on. By allowing the SM nodes
in the SC to be assumed to have a single nominal input, one could use CGP to de-
termine a graph (the SM phenotype) that would determine which SM operations
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would be applied to the CC (i.e. the SC would have non-coding nodes). This could
potentially make the genotype–phenotype mapping easier to reason about.

The issue of SM activation, as it stands, is problematic. In non-Boolean prob-
lems we allow the data to decide whether an SM node is active or not. Actually, in
most problems thus far studied, this has not caused an issue, as only a single in-
put has been applied at each iteration. However, we can envisage a problem which
is a generalization of a symbolic regression problem, in which each instance of
the problem has a table of inputs and outputs (possibly representing an unknown
symbolic function). To illustrate this, consider the problem of determining the fol-
lowing sequence of polynomials: f1(x) = x, f2(x) = x + 1, f3(x) = x2 + x + 1,
f4(x) = x3 + x2 + x + 1,. . .. For each expression fi, we could generate a table of
values by assuming that x increments from −1 to 1, in intervals of 0.01 (say). Thus
the problem to solve would be to determine the sequence of polynomials that give
zero error in each instance. If SM functions were mixed with computational func-
tions (as at present in SMCGP) and a data-dependent SM activation method was
used, then different phenotypes could emerge with each data instance! Of course,
evolution can find a way around this scenario when needed, perhaps by making both
inputs to a SM node point to the same location. In some circumstances, for example
as described in [3], the only way that the SMCGP could possibly find a learning-
algorithm is to have self-modification that depends on the data. In SMCGP, if the
phenotype needs to have different developmental outcomes based on the values of
the computation, this is possible. It is also possible for SMCGP to ignore this fea-
ture. Further, for some problems, it can just be disabled (such as with the Boolean
functions). Therefore the possibility of having data dependence seems desirable, as
it provides extra functionality when it is needed, but otherwise can be ignored.

4.3.8 And Back to CGP

It is interesting to note that some of the changes to the representation are also appli-
cable to classical CGP, and some to GP in general. The input/output strategy, relative
addressing and evolved constants are all compatible with classical CGP. It remains
to be seen how useful they are. However, since CGP has a fixed-length genotype
even if INPUT and OUTPUT functions are included, the numbers of inputs and
outputs will be bounded.

4.4 Solving Computational Problems with SMCGP: Parity

In this section we illustrate SMCGP using an example problem. The problem is how
to evolve a program (or circuit) that computes even-n-parity. The parity circuit is a
Boolean circuit that takes a bit string and returns TRUE if there are an even number
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of 1s in that string, and FALSE otherwise (note that the case of no bits is treated as
an even number).

The even-n-parity problem has been a benchmark in GP ever since John Koza
discussed the problem in his first book [11]. The problem is to evolve an even-
n-parity function using the Boolean two-input functions AND, NAND, OR, and
NOR. Koza tackled up to 11-parity [12] using a GP system with ADFs, and found
them difficult to evolve. Without ADFs, his approach failed to evolve parity circuits
beyond five inputs [11]. The largest evolved parity circuit we found in the literature
was 22 bits [15]. It should be noted that Poli and Page used all 16 two-input Boolean
functions in their function set, whereas in the work described in this section, we used
just AND, NAND, OR and NOR.

Spector also examined the even-parity problem, however he used a different func-
tion set [19]. He found better scaling behaviour than Koza did, on even-parity func-
tions up to six inputs. Other approaches have looked at finding general solutions.
Huelsbergen evolved machine-language programs that could iterate over the bits in
a string and from this, parity could be easily determined [10]. The solutions would
be suitable for any length of bit string. Recursion has also been successfully used to
solve the parity problem [24, 23, 25]. These approaches produced programs rather
than circuits to solve the problem. They also used high-level programming con-
structs rather than purely Boolean logical primitives.

However, we will look at a slightly different problem, namely that of evolving
all even-n parity functions up to even-N parity (where N may be infinite, in which
case we have a general solution). We call this problem the ‘all-even-n-parity prob-
lem”. In [2, 5], we investigated using SMCGP to evolve large even-parity circuits.
We found that some of the evolved programs were able to generate arbitrary-size
parity circuits. In [6], we gave a formal proof of the generality of one of the evolved
solutions. This is reproduced in Sect. 4.4.3.

4.4.1 Definition of Fitness

With SMCGP, instead of evolving a circuit for a particular input size, we can use
the technique to find a program that will generate parity functions of any size. To
do this, we evolve a program that produces a two-input parity circuit on the first
iteration, produces a three-input parity circuit on the second, and so on up to N
bits. The fitness is the number of correctly predicted output bits. We stop testing an
individual if it fails to produce a correct solution for a given input size. Procedure
4.2 details the fitness function.

We accumulated fitness over 19 iterations (LIMIT = 19), starting with even-2-
parity and ending on even-20-parity. Subsequently we examined whether the best
solutions were correct up to 24 inputs to check for signs of generalization.
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Procedure 4.2 Fitness function
1: Fitness, F = 0
2: Copy genotype to phenotype. Iteration, i = 0
3: repeat
4: BREAK = FALSE
5: Apply self-modification operations to phenotype i
6: increment i
7: Calculate fitness on test case, fi, by counting number of incorrect bits
8: if fi �= 0 then
9: BREAK = T RUE

10: end if
11: F = F + fi

12: until i = LIMIT OR BREAK

4.4.2 Results

Table 4.4 shows the average number of evaluations required to evolve a program for
a given number of inputs. The success rate was 100%. The results are based on 50
trials per function set.

In Table 4.5, the results are compared with results obtained from previous CGP
representations and Koza’s figures for GP with ADFs [12]. The SMCGP results
are clearly highly competitive. It should be remembered that SMCGP is solving
the all-even-n-parity problem rather than a series of single instances. We have in-
cluded Koza’s figures for reference. Koza calculated the computational effort for a
99% success rate and so represented the number of evaluations assuming the most
favourable number of runs and number of generations. More detailed comparisons
between CGP and other methods have been published previously in [22]. There,
it was seen that embedded Cartesian genetic programming was highly competitive
with other GP methods. Poli and Page evolved solutions to even-parity for up to 22
inputs [15]; however, they only gave numbers of evaluations for a single evolution-
ary run when the number of inputs was 13, 15, 17, 20 and 22. Thus we could not
make a comparsion.

After evolution, solutions were tested for inputs of up to 24 bits. It was found that
all solutions generalized to problems of this size. Most solutions had generalized to
all inputs when even-8 parity was reached. This is reflected in the results in Table
4.4, where the number of evaluations required to solve a problem stops increasing
because once a solution is found to generalize, no further evolution is required.

Examining the comparative results in Table 4.5, we can see that SMCGP scales
much better than CGP, ECGP and GP.
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Table 4.4 Average number of evaluations required to find a program that will solve parity up to a
given number of bits (50 runs)

Input bits Average evaluations
3 247,753
4 275,663
5 278,635
6 298,104
7 318,376
8 322,843
9 322,843

10 322,843
11 322,851
12 322,851
13 322,866
14 322,866
15 322,866
16 322,866
17 322,870
18 322,870
19 322,874
20 322,874

Table 4.5 Comparison with previous work on evolving parity. ‘GP’ means Koza’s tree-GP (with
ADFs) [12], ‘ECGP’ means embedded CGP [21], and ‘CGP’ is conventional CGP. With the excep-
tion of the figures from Koza, the figures show the average number of evaluations required to find a
given-sized parity circuit. Results for higher numbers of inputs are not available for CGP or ECGP.
The figures from Koza represent computational effort so they represent the minimum number of
evaluations required to achieve 99% success. The minimum was selected from the ‘ideal’ number
of runs and number of generations. A dash indicates that figures are unavailable

Input bits SMCGP CGP ECGP GP
4 275,663 81,728 65,296 176,000
5 278,635 293,572 181,920 464,000
6 298,104 972,420 287,764 1,344,000
7 318,376 3,499,532 311,940 1,440,000
8 322,843 10,949,256 540,224 –

4.4.3 A General Solution to Computing Even-Parity

It is instructive to examine an evolved solution to even-n-parity and how it can be
shown that the evolved genotype represents a general solution.

The genotype in Fig. 4.2 was evolved with a To-Do list length of 1. The 20-node
genotype had only seven active nodes. The inactive nodes are shown as unconnected
smaller squares. The nodes INPP at positions 0 and 2 obtain inputs x1 and x0, re-
spectively. Three Boolean functions BNOR, BAND and BOR appear at positions
4, 5 and 6, respectively. The OUTPUT function obtains the single output from the
BOR node. The only active SM node is DUP at position 1. It carries arguments
which cause it to copy eight nodes, beginning at the node on its left (INPP), and
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insert them immediately after itself. The action of the DUP node is shown using a
curved line with an arrow emanating from the box. Since the genotype has no con-
nections that are to the left of the first node, when DUP copies it disconnects the
first two nodes in the generated phenotype. These appear at the beginning (left) of
the new phenotype (iteration 1) at positions 0 and 1. It is important to note that in
this phenotype, a previously inactive node (BNAND) at position 9 becomes active.

We can see that the phenotype at iteration 0 computes even-2 parity as follows.
Denote the outputs of node i by zi. The symbol ⊕ denotes the exclusive OR opera-
tion. When two or more Boolean arguments are side by side (as if being multiplied),
it is assumed that the Boolean AND (BAND) operation is applied to the arguments
(e.g. xy is equivalent to BAND (x,y)). An overbar represents inversion.

z0 = x1,

z1 = x1,

z2 = x0,

z4 = BNOR(z2,z1) = x0 + x1 = x0x1 = (1⊕ x0)(1⊕ x1),
z5 = BAND(z1,z2) = x1x0,

z6 = BOR(z5,z4) = z5 + z4 = z5 ⊕ z4 ⊕ z4z5. (4.1)

Substituting for z5 and z4, expanding and then cancelling terms we obtain

z6 = x1x0 ⊕ (1⊕ x0)(1⊕ x1)⊕ x1x0(1⊕ x0)(1⊕ x1),
z6 = x1x0 ⊕1⊕ x1 ⊕ x0 ⊕ x1x0 ⊕ x1x0(1⊕ x1 ⊕ x0 ⊕ x1x0),
z6 = x1 ⊕ x0 ⊕1. (4.2)

Thus z16 = z6 is the even-2 parity function. When the eight duplicated nodes are
inserted into the genotype just before position 2, they cause the activation of the
BNAND node at position 9 in the new phenotype. This inverts the function com-
puted by the eight duplicated nodes in the genotype. So the output of this block
of nodes (denoted by A) is x2 ⊕ x1, since the INPP functions return the inputs in
descending order.

Now we turn our attention to the second iteration. When DUP inserts nodes 2–
9 after itself, nodes 4–9 are shifted right (becoming nodes 12–17) in the second-
iteration phenotype (enclosed in a box labeled B in Fig. 4.2). We now prove that this
set of nodes carries out the exclusive OR of its input (emanating from the NAND
node, which we call y) with the input variable (in this case x1):

z12 = x1,

z14 = BNOR(x12,y) = BNOR(x1,y) = (1⊕ x1)(1⊕ y),
z15 = BAND(y,z12) = BAND(y,x1) = x1y,

z16 = BOR(z15,z14) = z15 + z14 = z15 ⊕ z14 ⊕ z14z15,

z17 = BNAND(z16,z16) = z16 ⊕1. (4.3)
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Substituting for z14 and z15 in z16 and then noting that in the last term, when
x1y multiplies (1⊕ x1), we obtain (x1y⊕ x1y), which is zero, we can simplify these
equations as follows:

z16 = x1y⊕ (1⊕ x1)(1⊕ y)⊕ x1y(1⊕ x1)(1⊕ y),
z16 = x1y⊕ (1⊕ x1)(1⊕ y) = x1y⊕1⊕ x1 ⊕ y⊕ x1y,

z16 = 1⊕ x1 ⊕ y,

z17 = x1 ⊕ y. (4.4)

Since we have seen that the nodes in section C compute the odd-parity of the sup-
plied input y and the acquired input (by INPP), we find that at iteration 2 the phe-
notype computes y1 ⊕ x0 ⊕ 1 = y⊕ x1 ⊕ x0 ⊕ 1 = x3 ⊕ x2 ⊕ x1 ⊕ x0 ⊕ 1. This is the
even-4-parity function. To construct a proof by induction, we will assume that for n
inputs the phenotype computes even-n-parity.

The upper diagram in Fig. 4.3 shows the even-n-parity function En. This is the
inductive hypothesis. We have already seen that the function enclosed in box A
produces at the next iteration the two disconnected nodes and the function in A,
y = xn ⊕ xn−1, followed immediately by the function in box B, yn−2 = y⊕ xn−2.
Thus the new phenotype, En+1, generates the function

En+1 = yn−2 ⊕En ⊕ xn−1 ⊕ xn−2,

En+1 = y⊕ xn−2 ⊕En ⊕ xn−1 ⊕ xn−2,

En+1 = xn ⊕ xn−1 ⊕ xn−2 ⊕En ⊕ xn−1 ⊕ xn−2,

En+1 = xn ⊕En. (4.5)

Thus the inductive hypothesis also applies to the n + 1th iteration. We have al-
ready seen that at iteration 2, the form of the phenotype obeys the inductive hypoth-
esis. Hence the general case is proved.

4.4.4 Why GP Cannot Solve General Parity Without Iteration

The number of test cases required to define even-n-parity is 2n; from this, it follows
in a simple manner that the number of test cases required to define all the even-
parity functions from 2 to N is 4(2N−1 −1). Clearly, it soon becomes impossible to
evaluate the fitness of an evolved solution when N is too large.

SMCGP is able to address the scaling problem by evolving a program that can
generate instances of arbitrary size. The use of function nodes (i.e. INP, INPP and
SKIP) to acquire inputs and the ability to have multiple outputs (using the OUTPUT
function) mean that as programs alter themselves they can use as many inputs as
needed.
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A statically sized CGP program can use only a fixed number of inputs – or, with
the addition of functions such as INP, as many inputs as there are nodes in the graph.
If the GP method does not have recursion or iteration (which is common), then it
cannot acquire an arbitrary number of inputs. That is to say, it is always defined to
have a specific number of inputs (i.e. even-6 or even-9). Since SMCGP has iteration
built into the genotype–phenotype mapping, it can handle sequences of problems
such as parity and many other problems [6, 7, 4].

It is worth contrasting evolved programs that have iteration in the form of feed-
back loops with SMCGP solutions. A program to do this would need to supply a
bit-string and the number of bits in it. A general solution to even-n-parity can be
obtained by reading in n− 1 bits and EXORing them, and then, EXNORing with
the last bit. In circuit terms, such a program would be a sequential circuit (it would
have to be clocked). SMCGP solutions are different from this. The genotype is it-
erated n times to produce a non-sequential circuit that computes the parity. In other
words, SMCGP produces a sequence of parallel parity circuits none of which have
iteration in them. This has advantages and disadvantages. An advantage is that a
parallel non-sequential circuit is faster than a sequential circuit with the same func-
tion. A disadvantage is that the size of the circuit is dependent on the number of
inputs, whereas the size of a sequential program (or circuit) solving the problem is
not dependent on the number of inputs.

Feedback could be introduced into CGP quite easily but it has only recently been
given attention (see Sect. 2.9). One way would be to simply clock the feedback
signals back to wherever they were connected (this could be done with a flip-flop).
Clearly, feedback could also be introduced into SMCGP. It would be interesting to
investigate the utility of this.

4.5 SM vs GP vs GA

Besides the many changes that we have made to accommodate a developmental
approach to CGP by implementing self-modification in SMCGP, there is one other
key issue where a substantial change has taken place: SMCGP trains on problems
of different size and variable difficulty. Thus, it is not only the representation that
has changed, but also the way we assign fitness to an individual in the course of
evolution.

To understand this change, we need to review the historical changes that took
place when genetic algorithms were first developed into genetic programming.
Again, a key point at the time was the change of representation. From a bit-string
representation of genetic algorithms (or a fixed number of parameters), the repre-
sentation was changed to accommodate variable-length expression trees. This was a
key innovation, allowing an individual to adjust to the problem size by growing (or
sometimes shrinking) or more succinctly, by adapting its representation size.

As it was later pointed out and examined in detail by Langdon and Poli [13,
14], below a certain threshold of program size, an exact solution to a programming
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problem is not possible at all. Above that critical threshold, however, there exist
exact solutions to the problem, the more the larger the size of the program. This
insight has relevance not only to genetic programming but also to all methods of
automatic programming imaginable.

The other innovation of genetic programming was that evolution would be per-
formed not on one particular problem configuration but on a multitude. In GP par-
lance, a set of fitness cases was used to determine the fitness of the program. This
is in line with the functionality of a program which requires it to react to many sit-
uations, not just one. A program could perform relatively well by fulfilling certain
fitness cases perfectly and others only weakly, or by performing equally well on
all fitness cases (but without fulfilling any perfectly). The trade-off between these
two types of solutions gave rise to generalization measurements, with a program do-
ing the former being classified as a specialist, and a program doing the latter being
classified as a generalist.

The main point here is that the measurement of fitness based on many fitness
cases made the evolution of a more general solution possible in the first place. With-
out this input being offered to the system, generalization capabilities would have
remained elusive to genetic programming, much as they are to a genetic algorithm,
which usually performs an optimization for a particular solution only.

At the same time, a set of fitness cases constituted a problem for GP that required
its representation to be flexible enough to adapt its complexity. Thus, the problem
and its solution correspond to each other in the appropriate way.

In a similar vein, the progress envisioned with SMCGP depends on two interre-
lated innovations. On the one hand, the self-modification operations, together with
the adjustment of the numbers of inputs and outputs, allow an individual solution not
only to adapt to problem difficulty once and for all, but also to adapt continuously
in the course of its existence. This is the representation aspect of the innovation.

The other aspect, however, is that during training and evolution, fitness cases
from different problem dimensions and difficulties are used to determine the fitness
of an individual. Thus, for example, in the case of the even-n-parity problem, evolu-
tion is fed with fitness cases for a number of problem dimensions n = 2,3,4,5, . . ..
As we could see, if this is done in the proper way, SMCGP is able to extract struc-
ture from the fitness feedback that allows it to solve not only a single dimension of
parity problems, e.g. n = 5, but to solve the problem for the case of general n.

In a way, SMCGP can generalize on a higher level: it can generalize from simple
cases of a problem to more difficult ones, provided it has been shown in the course
of evolution what this will entail in terms of developing a structure.

Many people have, for many years, maintained that GP is not really what we
need since it would not be able to generalize appropriately, in the way a human can
generalize from a set of sample problems to the general structure. This, however,
is precisely what SMCGP can do, thanks to its corresponding features of SM op-
erations, ability to choose input and output dimensions, and training with problem
instances of varying difficulty.

Will SMCGP remain the only GP system that can do this? We doubt it. Sooner
or later, self-modifying linear or tree GP systems will be designed, and the training
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method of using problem instances of varying degree for fitness evaluation will be
applied to those representations. In fact, it might be interesting to apply this train-
ing method to existing classical representations to study what effect the additional
information offered in those examples has on a solution.

4.6 Implementing Incremental Fitness Functions

The fitness function described in Sect. 4.4.1 is typical of those used so far in SM-
CGP. But how does the incremental fitness function affect evolution?

In the experiment described in this section, we examined the even-parity problem
but introduced a variation of the fitness function where the fitness function was no
longer incremental.

We evolved circuits up to a certain number of test sets, and then checked to see
if the solutions generalized to more test sets. For the incremental fitness function,
the evaluation was aborted if the solution failed to correctly predict all bits in one
test set. For the alternative fitness function, the number of test sets that the fitness
function saw was fixed. This fitness function continued to evaluate iterations even if
the previous iteration was unsuccessful.

From Table 4.6 we see that for smaller problems, the incremental fitness func-
tion requires more evaluations than does a fixed-sized fitness function. However,
the incremental function soon becomes very efficient at finding solutions. The dip
in the average number of evaluations shows where the solutions begin to exhibit
generalization (see also Fig. 4.4).

Table 4.6 The average number of evaluations required to find a solution to the parity problem.
Programs need to grow from two inputs through to the maximum number of inputs

Inputs Fixed Incremental
2 5,068 6,547
3 14,131 20,630
4 26,006 30,692
5 56,600 39,152
6 108,685 57,430
7 122,506 58,313
8 167,623 44,298
9 180,048 39,049

10 204,034 51,483

However, from the results in Table 4.7 and Fig. 4.5, we see that the fixed-sized
fitness function is more likely to produce general solutions when they are evolved
for larger-input problems. For a smaller maximum number of inputs, the incremental
fitness function produces more general solutions, but still with low probability.

In addition to the increased number of evaluations required with the fixed-size
fitness function, there is another penalty to pay in terms of the number of test sets
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Fig. 4.4 The average number of evaluations required to find a solution to the parity problem.
Programs need to grow from 2 inputs through to the maximum number of inputs.

Table 4.7 Percentage of solutions that, when evolved up to a given input size, continue to gener-
alize to 20 inputs

Inputs Fixed Incremental
2 0 0
3 2 4
4 27 38
5 53 69
6 80 67
7 90 83
8 95 89
9 94 84

10 94 88

that need to be evaluated. Table 4.8 shows that the incremental fitness function re-
quires far fewer test sets to be processed and in turn, we can deduce that far fewer
test cases are required (as the earlier truth tables are small).

To conclude, we see that the incremental fitness function does not actively help
generalization. However, the performance benefits in terms of the amount of the
tests that need to be performed are likely to outweigh this. In future work, we will
investigate if this behaviour holds for other problems.
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Fig. 4.5 Percentage of solutions that, when evolved up to a given input size, continue to generalize
to 20 inputs.

Table 4.8 Average number of test sets evaluated when the solution is evolved up to a given input
size

Inputs Fixed Incremental
2 5086 6565
3 28281 26969
4 78037 41912
5 226417 54829
6 543441 82278
7 735053 86203
8 1173376 65050
9 1440402 56945

10 1836328 78538

4.7 Conclusions

SMCGP has shown itself to be a capable and versatile extension to CGP. In the
examples shown here and discussed elsewhere, we see that the addition of self-
modification adds useful functionality and can be used to solve problems that a
fixed-representation GP system cannot. Furthermore, we see that the implementa-
tion and representation are relatively straightforward. SMCGP can output human-
readable programs that can be proved to behave in certain ways. Additionally, work
has shown that the addition of self-modification does not harm the evolvability of
CGP [4]. This gives us confidence that the SMCGP approach may be a suitable
replacement for the classical CGP model.
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Currently, a new version of SMCGP is under development that aims to simplify
SMCGP (for example by having a more streamlined representation and function set)
whilst at the same time increasing the developmental richness (by moving to a 2D
representation). Early results on digital circuits [9] and mathematical results [8] are
promising.
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