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Abstract With current developments of parallel and distributed computing, evo-

lutionary algorithms have benefited considerably from parallelization techniques.

Besides improved computation efficiency, parallelization may bring about innova-

tion to many aspects of evolutionary algorithms. In this article, we focus on the effect

of variable population size on accelerating evolution in the context of a parallel

evolutionary algorithm. In nature it is observed that dramatic variations of population

size have considerable impact on evolution. Interestingly, the property of variable

population size here arises implicitly and naturally from the algorithm rather than

through intentional design. To investigate the effect of variable population size in

such a parallel algorithm, evolution dynamics, including fitness progression and

population diversity variation, are analyzed. Further, this parallel algorithm is

compared to a conventional fixed-population-size genetic algorithm. We observe that

the dramatic changes in population size allow evolution to accelerate.

Keywords Variable population size � Population bottleneck �
Evolution acceleration � Parallel computing � GPU

1 Introduction

It is well known that evolutionary algorithms are often computationally expensive

and benefit from parallelization [1]. In other research, we have investigated the use
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of Graphical Processor Units (GPUs) to accelerate the evaluation of individuals in

genetic programming [5]. One of our current implementations attempts to optimize

the use of multiple GPUs within a single computer. To do this a number of

processes in the evolutionary algorithm are required to work asynchronously. The

algorithm results in the population changing size during evolution. This variable

population size is an unintentional side effect of the algorithm. However, it gave us

the opportunity to investigate the behavior of variable size populations in a unique

‘‘real world’’ scenario. The full algorithm is described in Sect. 3.

Population size is crucial to evolution in both natural and artificial systems. From

the biological point of view, population size is linked to the likelihood of preserving

genetic variations through reproduction [10]. The relationship between population

size and genetic variation is different under different conditions. Natural selection

can either promote genetic variation (i.e., diversifying selection) or reduce genetic

variation (i.e., purifying selection). Under diversifying selection, genetic variation

can be fixed faster in larger populations, while under purifying selection, smaller

populations show higher evolution rate [24]. Moreover, genetic variations may also

be lost due to genetic drift. A positive relationship between population size and

genetic variation is prevalent for neutral or nearly neutral mutations, because these

are more likely to be lost during genetic drift in smaller populations [10]. In most

cases of natural systems, larger populations are more stable and have slower rates of

accepting new phenotypic variations. In smaller populations, however, change of

the phenotype can happen relatively faster, but these populations have a higher risk

of extinction due to the limited genetic diversity.

In computational evolution, population size is directly related to the search space

and computation overhead [21]. A carefully designed population sizing scheme can

improve the performance of an evolutionary algorithm whilst balancing search

capability and evaluation overhead. In previous work in the literature, the general

approach was to implement the dynamic population size adjustment during

evolution according to a feedback loop that is able to reflect the requirement of

population diversity over time. These approaches are reviewed in the next section.

In this article, the variable population size results from the parallelization of our

algorithm rather than by intentional design. The dynamics of this variable

population size and its effect on evolution is analyzed. We particularly examine

the fitness progression and population diversity variation. When compared to a

conventional fixed-population-size Genetic Algorithm (GA), it is shown that our

new algorithm results in faster evolution.

2 Background

2.1 Population size variation in biology

In biology, population size has been shown to play an important role in evolution.

Both theoretical hypotheses and empirical verifications can be found in areas such

as conservation biology [27], evolutionary biology [9, 24], and population genetics
[15, 29].
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In nature, the size of a population often changes dramatically during evolution.

Biologists use the term population bottleneck to describe an event in which the size

of a population has been significantly reduced. Natural populations can be affected

considerably by these bottlenecks in evolution. For instance, genetic variability is

expected to decline rapidly after bottlenecks and to increase gradually during

recovery periods [23]. The rate of such genetic change depends critically on the

intensity of population bottlenecks and the rate of population growth in recovery.

In research on human evolution, it is reported that there existed several major

population bottlenecks that contributed significantly to human evolution [2, 6, 16].

These population bottlenecks are empirically identified through investigating

genetic diversity in the human genome. After each bottleneck event, the genetic

diversity of human populations was found to have decreased. Recently, Gherman

et al. [11] report that population bottlenecks are a potential major shaping force of

human genome architecture.

The drastic growth of a population can also affect its evolution. In a study on the

recent, rapid molecular evolution in human genomes, Hawks et al. [17] hypothesize

that the current dramatically growing human population may be the major driving

force of new adaptive evolution. They state that a growing population size can

provide the potential for rapid adaptive innovations if a population is highly

adaptive to the current environment. Therefore, significant fluctuations in popula-

tion size can contribute a great deal to evolution.

2.2 Population size control in evolutionary algorithms

In computational evolution, population size is closely related to an algorithm’s

search capability. A small population size may not be able to provide the necessary

search diversity. However, larger population sizes require to pay greater compu-

tational costs [21]. Many efforts have been devoted to control this critical parameter

in evolutionary computation. A method of theoretically estimating optimal

population size in GAs is proposed by Goldberg et al. [13], where the population

size can be determined based on the complexity of the given optimization problem.

This approach suggests a general principle for population size optimization,

although its application still needs further work since estimating the complexity of

many problems can be challenging if not impossible.

In addition to initializing a proper population size beforehand, it has been shown

later on that the dynamic adjustment of population size during evolution can also

improve the performance of an evolutionary algorithm. Some empirical methods for

variable population size have been proposed.

Arabas et al. [3] propose the Genetic Algorithm with Variable Population Size
(GAVaPS) where the algorithm considers the age and lifetime of each individual.

Population size fluctuates as a result of removing over-aged individuals and

reproducing new ones. Back et al. [4] extend this lifetime notion to steady-state

GAs in their Adaptive Population size Genetic Algorithm (APGA). Fernandes

and Rosa [8] propose the Self-Regulated Population size Evolutionary Algorithm
(SRP-EA) to enhance APGA using a diversity-driven reproduction process.
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In other work, Smith [26] adjusts the population size based on the probability

of selection error. Goldberg [12] proposes the ‘‘serial and parallel GA’’ by

re-initializing the population with preserved elite and randomly generated individ-

uals to restart the search process when the algorithm converges. Schlierkamp-Voosen

and Muhlenbein [25] demonstrate a sub-population competition scheme, where

better performing sub-populations are rewarded with increasing sizes. Harik and

Lobo [14] introduce parameter-less GA, where several populations with different

sizes evolve in parallel, starting with small population sizes. By inspecting the

average fitness of these populations, less fit undersized populations are replaced by

larger ones. Koumousis and Katsaras [20] propose a variable population size GA that

works with a periodically re-initialized population, the size of which change with a

saw-tooth-like function.

Later, Eiben et al. [7] suggest to use the pace of fitness improvements as the signal

to adjust population size dynamically in the Population Resizing on Fitness
Improvement GA (PRoFIGA). Similarly in genetic programming systems, Tomassini

et al. [28] implement a dynamic population size algorithm using fitness progression

as the signal to delete over-sized and worse-fit individuals or to insert mutated best-fit

individuals under certain conditions. Hu and Banzhaf [18] adopt a biologically

motivated measurement technique for the evolution rate as an indicator to adjust

population size and demonstrate that this method can accelerate evolution in genetic

programming.

The existing adaptive population size schemes in evolutionary algorithms are

mainly designed by intentionally adjusting the population size based on a certain

feedback loop. The common finding from these approaches is that the performance

of an evolutionary algorithm can be improved by varying the population size during

evolution.

In the technique presented here, the variable population size scheme does not

result from intentional adjustment but is a natural consequence of the asynchronous

behavior of the parallel algorithm. This raises a number of questions, with the most

important one being whether this variable population size property can improve the

algorithm’s performance. This motivates us to take a look at how this unintentional

but real scenario can affect the pace of evolution.

3 Asynchronous parallel evolutionary algorithm (APEA)

To understand the overall goal of this research, and not just the variable population

size issues detailed here, it is important to understand what motivated this

algorithm.

Recently there has been much interest in accelerating evolutionary algorithms

using Graphical Processing Units (GPUs) [5]. GPUs may contain several hundreds

simple processors, and typically run a single program on many different sections of

data in parallel (the processors are usually considered as a Single Instruction

Multiple Data (SIMD) processor).

Many modern GPU setups contain multiple GPUs. In evolutionary algorithms,

and particularly in genetic programming, it is difficult to keep all the GPUs busy,
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i.e., supplied with new individuals for evaluation. With genetic programming (the

primary focus of our research, but not this paper) there is a significant overhead in

the compilation stage of programs which is necessary before execution.

Our approach aims at efficiently exploiting all of the GPU processing available in

a multi-GPU scenario. Individuals are evaluated in a fitness case parallel fashion,

with each GPU device processing a different individual.

Individuals need to be first converted from their genotype to CUDA C source

code, which is the programming language used by the GPUs, and then compiled to

programs that can be run on the GPUs. The CPUs are responsible for this task.

Executing individuals and evaluating their fitness is the other and even more time

consuming component of an evolutionary algorithm, which will be operated on

GPUs. The entire system is designed to act in an asynchronous way. Compiling

individuals is performed asynchronously on CPUs, with the execution of other

individuals on GPUs. Further, each GPU device executes the individuals

asynchronously, so that several different individuals are evaluated at the same time.

The evolutionary algorithm itself is also designed to operate in an asynchronous

manner in order to ensure that there are always unevaluated individuals available for

a GPU device to process. For convenience we will refer to this algorithm as APEA

(Asynchronous, Parallel Evolutionary Algorithm).

The entire process in APEA can be considered divided into a number of different

tasks:

• Generation of new individuals and compilation;

• Execution of individuals;

• Maintenance tasks.

Figure 1 illustrates the process in APEA. The following sections describe these

steps in more details. Note that the size of the shared population varies as a result of

the operations by multiple threads. The GPU thread increases the size of the shared

population when it posts new compiled individuals. The housekeeping thread

decreases the size of the shared population after it removes less fit individuals. The

CPU thread has no effect on the size of the shared population.

3.1 New individual generation and compilation

In APEA, each of the CPU processors available is responsible for generating new

individuals and compiling them from their representations to GPU executable

programs.

Each processor selects—using tournament selection—a number of individuals

from the population of individuals (‘‘shared population’’). From these, it generates

new individuals by genetic variation, e.g., mutation and crossover. These

individuals are then converted to CUDA C source code. Each compiled program

also acts as a fitness function, and therefore also includes all the code required to

implement a test case.

The individuals are then compiled by a CPU using the CUDA compiler. Once an

individual has been compiled, it is placed into a list (‘‘compiled individuals’’). This
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process is repeated continuously. The process also occurs asynchronously across the

available CPU processors.

3.2 Individual execution

Each GPU device has a corresponding process running on the host computer. If the

GPU device is idle, the process examines the list of compiled individuals and selects

one to process. It removes this individual from the list to make it unavailable for

other GPU devices. The process then loads this individual into its GPU to execute.

As in previous work, the function encoded by each individual is then executed on

the test cases in a SIMD style, with all the test cases evaluated in parallel against a

single individual’s program [5]. The output from the function on each test case is an

error, i.e., the deviation of actual behavior from target behavior. Errors are summed

(again on the GPUs) to provide a fitness score for the associated individual.

Individuals that have been evaluated are written back to the shared population.

Here, they can be used by a CPU thread to generate new individuals. Then these

individuals are unloaded from the GPUs.

The process then looks to see if there are other compiled individuals to process,

and the execution process repeats.

3.3 Maintenance tasks

This process is primarily responsible for maintaining the shared population. As GPU

processes finish executing individuals, these individuals are put back into the shared

Fig. 1 Overview of APEA. The house keeping thread maintains the shared population. The CPU thread
generates new individuals and compiles them. The compiled individuals are executed and evaluated by
the GPU thread and then inserted back to the shared population
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population where they can be used to generate new ones. If not maintained,

however, the population would keep growing in size. This would not only reduce

the efficiency of the tournament selection but also increase the memory

requirements of the algorithm.

In order to address this problem, the house keeping thread periodically removes

the worst individuals from the population. This is done approximately every Dms

(recovery duration) and is performed asynchronously with the other processes. This

periodic removal causes the population size to vary over time in a saw-tooth-like

fashion, and it is the effect of this action that we want to study here.

The house keeping thread is also responsible to monitor the population and

produce statistical information—as well as terminating the experiment if a successful

solution is found.

3.4 Algorithm simulation

For the work presented here a simulation of the APEA algorithm was implemented

instead of employing real GPU devices. This primary simulation allows for an

optimization of parameters for the actual parallel algorithm in addition to allowing

the study of the behavior of the algorithm itself.

The actual algorithm is designed for genetic programming, but for simplicity this

has been replaced here with a GA on two classical benchmark problems: the

OneMax and the Spears multi-model problems [19]. Individuals are encoded as

binary strings for both problems. Two point crossover is used. During mutation, the

probability of altering one bit is (arbitrarily) set to 0.05. Tournament selection is

used, with 5 individuals being considered.

The behavior of the algorithm, being asynchronous, is dependent on the time

required for each component. The actual parallel algorithm was benchmarked to

provide approximation of the timings required for the simulator. The simulator

operates in fixed time steps, with events scheduled for processing at appropriate

time steps. One time step in the simulation corresponds to 1 ms.

For compilation of individuals, the time taken to compile individuals (i.e., copy a

selection of individuals from the shared population to the compiled individuals list)

is computed based on estimates taken from benchmarking the actual implementation

of APEA. There is an overhead of 100 time steps per set of individuals, and each

individual takes 10 time steps to compile. To this time, we add a random time period

to simulate the variability in compilation time. Noise of a maximum of 200 time

steps (uniformly distributed) is added to the total time.

For execution, we simulate the run time of a program by making the processing

time per individual proportional to the length of the program, plus an overhead.

We use 1 time step per 100 bits of the genotype length. The overhead is fixed at

100 time steps, and again some random variation is added with a noise of 100

time steps. A set of 10 individuals are loaded into a GPU for each round of

execution. Note that although a GPU executes individuals one by one asynchro-

nously, a set of 10 individuals are loaded to a GPU at a time for the efficiency on

the network.
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For system monitoring, the house keeping thread generates the statistical

information, e.g., the size of the shared population, the best and the average fitness

of the current population, etc., periodically every 1,000 time steps.

4 Analysis of evolutionary dynamics

The original motivation for APEA was to utilize multiple processing units, however,

the unintentional property of varying population size generates interesting questions

about its effect on evolution. In this section, we perform an analysis of the

algorithm’s fitness progression and population diversity variation in order to take a

closer look at the impact of population bottlenecks and size fluctuations.

Furthermore, APEA is compared to a conventional fixed-population-size GA to

see whether the algorithm can benefit from a variable population size scheme.

4.1 Test suites

Two classical benchmark problems are employed in the experiments, the OneMax

problem and the Spears multi-model problem.

For the OneMax problem, each individual is initialized as a binary string

containing random numbers of 0s and 1s. The objective of this algorithm is to

maximize the number of 1s in the bit string and thus to eliminate 0s. The fitness of

an individual is the number of remaining 0s, hence a score of 0 represents a binary

string consisting purely of 1s.

The Spears multi-model problem [19] has been designed for systematic analysis

of GA behavior. The problem generator creates a certain number of binary strings

with length L, each of which represents a peak in an L dimensional space. The

height of peaks can be defined by users with the highest peak of height 1. The goal is

to find the highest peak. The fitness of a bit string s with length L is defined as,

f ðsÞ ¼ L� HammingDistanceðs;PeaknðsÞÞ
L

� heightðPeaknðsÞÞ; ð1Þ

where Peakn(s) is the nearest peak in Hamming space to the bit string s. It can be

seen that the complexity of this benchmark can be manually configured by choosing

the binary string length, the number of peaks, and the assignment function of peak

heights. Here, we set 6 peaks with linearly increasing heights between 0.5 and 1.

For both benchmarks, we set the starting and default population size 100, since

this is the common configuration in the literature. The OneMax problem is

employed in Sects. 4.2 and 4.3 because a detailed investigation on evolutionary

dynamics can benefit from such a linear search problem. Further in Sect. 4.4, the

APEA and a conventional GA are tested both on the OneMax problem and the

Spears multi-model problem for comparison purposes. The bit string length is set

to 100 for OneMax problem and is set to 200 for the Spears multi-model problem.

The goal is to test the algorithm performances on problems with different

complexity.
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4.2 Variable population size and fitness progression

As described in Sect. 3, the house keeping thread leads to a reduction in population

size and therefore to a population bottleneck each time it is executed. In our

simulation, parameter D controls how often this happens through setting four

different recovery duration values, i.e., 2,000, 5,000, 10,000, and 20,000 ms. Here,

we are particularly interested in the dynamics of the population size and that of the

average/best fitness over a simulation run on the OneMax problem.

On the one hand, the degree of increase in population size is essentially

determined by D. Specifically, the population grows as individuals are evaluated,

and at the end of each recovery period the population is set back to 100 individuals.

Figures 2, 3, 4, 5 each show the saw-tooth-like population fluctuations (left y-axis)

in a typical run with one of the four values of D. Recall that our algorithm

simulation collects system statistics every 1,000 ms, represented by each point in

these figures. The data collection terminates when the best population fitness

reaches 0, i.e., a perfect solution is found.

Note that the reset population size captured in those figures fluctuates at 100 and

110. This is due to the algorithm implementation with multiple threads. That is,

occasionally 10 new individuals (one set of individuals loaded to a GPU for

execution, see Sect. 3.4) are inserted into the shared population by a GPU thread just

prior to the statistics being generated by the house keeping thread. The population

size growth after bottlenecks can also vary during implementations because of the

simulated processing time and noises (See Sect. 3.4).

On the other hand, we also plot the best and the average fitness development

curves (right y-axis). From these plots, we observe that the greater D is, the longer it

takes the algorithm to discover an optimal individual, while the number of
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Fig. 2 Variable population size and fitness development in an example run with recovery duration
D = 2,000 ms. Since the system generates status statistics every 1,000 ms, represented by a point in the
figure, there is only one point between every two bottlenecks
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bottlenecks experienced is smaller. The figures also suggest a correlation between

varying population size and fitness progression. It can be observed that, for all four

cases, both fitness metrics develop in synchrony with the population size variation

cycle. There is always a considerable improvement of the average fitness at the

population bottleneck. This behavior is fairly self-explanatory because of the

massive removal of inferior individuals by the house keeping thread. Second, best

population fitness improvement mostly occurs after each bottleneck, but over an
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Fig. 3 Variable population size and fitness development in an example run with recovery duration
D = 5,000 ms. There are four data points between every two bottlenecks. The top population size can be
more than twice as that of the run with D = 2,000 ms
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Fig. 4 Variable population size and fitness development in an example run with recovery duration
D = 10,000 ms. With a longer recovery duration, population size can grow by a much higher magnitude
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extended period of time. This indicates that population bottlenecks accelerate the

search for elites.

To further verify the above observation, we focus on the change of fitness

between two consecutive bottlenecks, D ms apart. For a given recovery duration of

D ms, we divide the evolutionary process into k micro-steps (1000 9 k = D). For

each micro-step, we measure the best fitness improvement over the last 1,000 ms.

We calculate the mean and variance of these measurements over the entire evolution

of 200 runs. These statistics are depicted as bar charts with error intervals in Figs. 6,

7, 8, 9. From these figures we conclude that the rate of best fitness improvement is
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Fig. 5 Variable population size and fitness development in an example run with recovery duration
D = 20,000 ms. In general, greater recovery duration needs longer time in an entire evolution process,
but interestingly, requires less number of bottlenecks
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highly correlated with the population size fluctuation, and the second micro-step

always has the greatest boost in best fitness improvements. Such performance leap

can be attributed to the enhanced local search in a population with less diverse but

more fit individuals that have survived after a bottleneck.

4.3 Variable population size and population diversity

With a binary string representation for the OneMax problem, the genotypic diversity

is calculated by a measure proposed by Morrison and De Jong [22]. This measure is

originally from the concept of moment of inertia for measurement of mass
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Fig. 7 The best fitness improvement in 5 (k = 5) different micro-steps with recovery duration
D = 5,000 ms. Data are collected and averaged over 200 runs. It is clear to see that the second micro-step
has the highest fitness improvement among all five
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D = 10,000 ms. Data are collected and averaged over 200 runs. With longer recovery duration, the effect
of the bottlenecks can be seen more clearly
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distribution in physics and is transferred by the authors to measure the population

diversity of high-dimensional GA genotypes. Morrison and De Jong further verify

that their measure is equivalently functional as but more computationally efficient

than the Hamming distance method, a common measurement for binary string

genotype space diversity.

In Morrison and De Jong’s measure, for P binary strings with length L, the

coordinates of the centroid of these P strings C = (c1, c2, c3,_, cL) are computed

as,

ci ¼
PP

j¼1 xij

P
; ð2Þ

where xij [ 0, 1 (1 B i B L, 1 B j B P) is the value of the i-th allele on the j-th
binary string. The moment of inertia I of the P strings about the centroid is,

I ¼
XL

i¼1

XP

j¼1

ðxij � ciÞ2: ð3Þ

Therefore, the genotypic diversity of a population independent of its size can be

obtained as I
P:

Figures 10, 11, 12, 13 show the change of genotypic population diversity over

time in the four example runs that we looked into previously. It can be observed that

genotypic diversity has a generally decreasing trend as evolution proceeds, and each

population bottleneck leads to a considerable reduction in genotypic diversity.

In terms of the phenotypic/fitness diversity, fitness variance is adopted as our

proxy measurement. Figures 14, 15, 16, 17 depict the fitness variance changes as the

population size fluctuates. Although not having exactly the same pattern as

genotypic diversity, fitness variance also has a strong correlation with population

size fluctuations. That is, not surprisingly, population bottlenecks reduce the fitness

diversity a great deal.
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Table 1 shows the average diversity reduction over 200 collected runs. The

higher the recovery duration D, the greater is the bottleneck effect, and thus the

larger both genotypic and fitness diversity reductions are.

From investigations both at the population fitness progression and diversity

variation, it can be observed that population bottlenecks considerably reduce the

population diversity but effectively preserve highly fit individuals. Therefore, we

interpret the results in the following way: Reduced population diversity enhances
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Fig. 10 The phenotype diversity measure changes with the population size fluctuates. The recovery
duration D = 2,000 ms. Again each point represents the status data collected every 1,000 ms, so there is
only one point between every two bottlenecks

 100

 200

 300

 400

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 0

 5

 10

 15

 20

 25

po
pu

la
tio

n 
si

ze

m
om

en
t o

f i
ne

rt
ia

time (ms)

Recovery duration D = 5,000 ms

moment of inertia
population size

Fig. 11 The phenotype diversity measure changes with the population size fluctuates. The recovery
duration D = 5,000 ms. Each bottleneck reduces the genetic diversity considerably
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local search with those adaptive individuals. Thus, the search for fitter individuals can

be accelerated after each population bottleneck, at least for this well-behaved

problem. Such an observation is also in line with biological discoveries (see Sect. 2.1).

4.4 Comparative studies

A further motivation for this work was to perform comparative studies between our

new parallel algorithm and a conventional GA on the same problem. For the APEA
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Fig. 12 The phenotype diversity measure changes with the population size fluctuates. The recovery
duration D = 10,000 ms in this run
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Fig. 13 The phenotype diversity measure changes with the population size fluctuates. With the longest
recovery duration D = 20,000 ms, the effect of population size fluctuation on diversity reduction can be
observed very clearly here
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implementation it was important to verify that the devised evolutionary algorithm

worked and performed comparably to a conventional approach. In practice, a small

performance decrease can be tolerated because of the GPU acceleration which

provides a massive decrease in clock time, it would even be acceptable if the

number of evaluations required was less.

We compare to a conventional GA that has the same operations and the same

parameter configurations as APEA, except that the population size is fixed. The

termination criterion is again the reaching of the optimum. Since in the APEA
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Fig. 14 The fitness variance changes with the population size fluctuates. The recovery duration
D = 2,000 ms. Again each point represents the data collected every 1,000 ms
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Fig. 15 With the recovery duration D = 5,000 ms, the fitness variance changes as the population size
fluctuates
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Fig. 16 With the recovery duration D = 10,000 ms, the fitness variance changes as the population size
fluctuates
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Fig. 17 With the recovery duration D = 20,000 ms, the fitness variance changes as the population size
fluctuates. It can be seen from this and previous three figures that the fitness variance drops considerably
after each bottleneck event

Table 1 Population bottleneck

effect on genotypic diversity and

fitness variance

D Average genotypic

diversity reduction

Average fitness

variance reduction

2,000 ms 0.89 1.96

5,000 ms 1.65 3.65

10,000 ms 2.08 4.43

20,000 ms 2.42 4.52
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population size fluctuates depending on recovery duration D, we calculate the

average population size during an entire evolutionary process over 200 runs for each

choice of D. This average population size will be set as the default and fixed

population size for the conventional GA. Therefore, it is possible and fair to

compare the new algorithm with four D values to four fixed-population-size GAs.

For each algorithm, 200 runs are performed and for each run the number of

evaluations is recorded.

Tables 2 and 3 show the results from two sets of algorithms on two benchmarks.

The mean value and standard deviation of the total number of individual evaluations

in each algorithm are compared. Both benchmarks benefit from small population

sizes by looking at the number of evaluations.

For the OneMax problem, APEA always has less computational costs than a

conventional GA with corresponding fixed population size. The obtained p-values

from the Kolmogorov-Smirnov test, which indicate the probability that two sets of

sample data have no significant difference, also confirm the superiority of APEA

against conventional GAs.

For the more difficult Spears multi-model problem (see Sect. 4.1), both

algorithms need much more computational efforts to reach the optima. Interestingly,

however, the APEA shows substantial superiority by requiring much less individual

evaluations than conventional GAs.

Table 2 Comparison on the computation costs (number of evaluations) to find the optima between

APEA and conventional GAs on OneMax problem (APS stands for the average population size, and SDV
stands for standard deviation)

APEA Conventional GAs p-value

D APS Mean SDV Popsize Mean SDV

2,000 ms 135.59 5,258 628 136 5,707 1,185 \0.001

5,000 ms 227.29 6,654 703 227 8,364 1,562 \0.001

10,000 ms 379.62 9,418 818 380 12,443 2,307 \0.001

20,000 ms 684.70 14,819 1,036 685 20,588 3,430 \0.001

Table 3 Comparison on the computation costs (number of evaluations) to find the optima between

APEA and conventional GAs on Spears multi-model problem (APS stands for the average population

size, and SDV stands for standard deviation)

APEA Conventional GAs p-value

D APS Mean SDV Popsize Mean SDV

2,000 ms 151.87 31,756 8,562 152 172,571 79,876 \0.001

5,000 ms 226.35 33,816 8,319 226 288,141 148,145 \0.001

10,000 ms 350.64 38,281 8,614 351 481,658 208,038 \0.001

20,000 ms 598.43 47,580 8,902 598 784,316 223,113 \0.001
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These comparative studies further verify that the variation of population size in

APEA can accelerate the evolutionary process. Moreover, this acceleration is

considerably more noticeable when the variable population size scheme is applied

on the more complex problem.

5 Concluding remarks and future work

In this article, we studied how the property of variable population size can

accelerate evolution in the context of the asynchronous parallel evolutionary

algorithm (APEA), designed to function with multiple CPUs and GPUs. The

variable population size property of the algorithm results from the asynchronous

behavior of this algorithm, rather than by intentional design.

From the analysis, it is seen that variation in population size leads to a varying

pace of search in the evolutionary algorithm. That is, the search for new better

individuals is accelerated each time after a population bottleneck. This effect is

further investigated by looking into the population diversity variation. It is shown

that the enhanced local search for fitter individuals is a result of the drastic

population diversity reduction as well as elite individual preservation after

population bottlenecks. The results also suggest that the degree of fluctuation in

the population size can have different effects.

In this preliminary work, we simplify our parameter choices by using a fixed

tournament selection size. The size of the tournament selection decides the pressure

on choosing parent individuals. In a size-fluctuating population, the parent selection

pressure changes with a fixed tournament size. That is, a larger population may have

less chances to pick up better parents and thus to discover fitter offspring. This may

also contribute in part to the observation of the bottleneck effects, as well as the

major force of enhanced elite search with limited population diversity. The fixed

tournament size is implemented here for the sake of simplicity. The balance among

selection pressure, population diversity, and search ability is a topic that needs

further examination. It would be interesting to test a varying tournament size, for

instance, proportional to the population size, and we intend to examine this question

in future work.

The findings in this work are analogous to those known from natural evolution,

where it is seen that drastic changes of a population provide great variation potential

and accelerate the acceptance of new genetic variations.

The performance of our algorithm is compared to conventional fixed-population-

size GAs. By investigating the required computation costs (number of individual

evaluations) for these two algorithms to solve the same test problem, it is shown that

variable population size can effectively improve performance.

As with other previous examples, the results of this work verify a potential

advantage of using variable population size schemes in evolutionary algorithms.

The results also validate that the algorithm implemented for the parallel system is

not only functional, but may by itself improve the performance of the system.

Therefore, variable population sizing techniques hold a lot of potential for future

research, especially given the fact that variable population size is a general property
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in natural systems which we know to be more sophisticated and robust than

computational evolutionary systems. In our forthcoming work, the algorithm will be

demonstrated on genetic programming systems. It will be interesting to see if the

performance gain from variable population size is also reachable for genetic

programming problems.
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