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ABSTRACT
This paper aims to improve the capability of genetic pro-
gramming to tackle the evolution of cooperation: evolving
multiple partial solutions that collaboratively solve struc-
turally and functionally complex problems. A multilevel
genetic programming approach is presented based on a new
computational multilevel selection framework [19]. This ap-
proach considers biological group selection theory to encour-
age cooperation, and a new cooperation operator to build
solutions hierarchically. It extends evolution from individu-
als to multiple group levels, leading to good performance on
both individuals and groups. The applicability of this ap-
proach is evaluated on 7 multi-class classification problems
with different features, such as non-linearity, skewed data
distribution and large feature space. The results, when com-
pared to other cooperative evolutionary algorithms in the lit-
erature, demonstrate that this approach improves solution
accuracy and consistency, and simplifies solution complex-
ity. In addition, the problem is decomposed as a result of
evolution without human interference.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods; I.5.2 [Design Methodology]: Classi-
fier design and evaluation

General Terms
Algorithms, Design, Experimentation

Keywords
Cooperative evolutionary algorithms, Multilevel selection,
Hierarchical model, Emergent decomposition, Coevolution,
Multi-class Classification
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1. INTRODUCTION
Genetic programming has proven to be an efficient and

powerful problem-solving strategy. However, like all evolu-
tionary algorithms, it is not a panacea; it has difficulty solv-
ing high dimensional, multimodal problems, which normally
mean huge search spaces, or complicated fitness definitions,
or expensive fitness evaluations. An effective way to solve
increasingly complex problems is to explicitly evolve solu-
tions in the form of interacting coadapted subcomponents
[12]. Evolutionary algorithms that searching for such coop-
erative subcomponents are called cooperative evolutionary
algorithms (CEAs), in which individuals represent partial
solutions.

With respect to cooperative GP, considerable research
has been devoted to investigate team evolution, major re-
search work including GP Teaming [3], Orthogonal Evolu-
tion of Teams (OET) [14], and Symbiotic Bid-Based GP
(SBB) [10]. A team, referring to a solution, is an aggrega-
tion of some individuals (subcomponents) that are evolved
simultaneously in one population. It is important to note
that GP in team evolution conducts not merely a multi-
modal search; the cooperative interactions between subcom-
ponents are also taken in account.

This paper takes a different approach to tackle the evo-
lution of cooperation which is based on a computational
multilevel selection framework [19]. This framework on one
hand captures the gist of multilevel selection theory (MLS)
[16, 17, 20] in biology to encourage cooperation; on the other
hand, it extends MLS to hierarchically create solutions for
complex problems from simple subcomponents. The goal
of this study is to discuss how to map the abstract frame-
work to a GP implementation called Multilevel Genetic Pro-
gramming (MLGP). We examine the applicability of MLGP
in multi-class classification (MCC) problems. The problem
space of MCC contains specialized sub-domains that may
likely be overlooked by a single monolithic classifier; a feasi-
ble approach is to use multiple but simpler classifiers which
co-adapt to balance the detection rate and false alarm rate
of final solutions. Because of this, problem decomposition is
impossible to assess prior to runs. Therefore, MCC problems
are particularly suitable for testing MLGP’s ability for co-
operation and problem decomposition. MLGP is compared
with traditional Linear GP, OET, SBB, and XCSR (a real-
valued XCS classifier system) on 7 UCI benchmark datasets.
The results indicate MLGP is more accurate and consistent
with respect to classification performance. We also show
that MLGP returns the simplest solution on all datasets,
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and adapts the complexity of solutions to the dataset’s level
of difficulty.

2. RELATED WORK
Based on how final solutions are presented, CEAs can

further be categorized into population-based methods and
team-based methods. In population-based methods, the en-
tire population becomes the solution of targeted problems,
such as in Learning Classifier Systems (LCS) [7] and the
work described in [5, 8]. One of their drawback is not measur-
ing the performance of subcomponents as a whole. Without
such a measurement, evolved individuals are not sufficient
to consistently provide cooperative behavior, and the com-
pleteness of final solutions cannot be guaranteed [14, 19].

Team-based methods overcome this disadvantage by intro-
ducing the idea of teams. Well-known team-based methods
include GP Teaming [3], Orthogonal Evolution of Teams
(OET) [14], Cooperative Coevolutionary Evolutionary Algo-
rithms (CCEA) [12]1, Individual Evolution (IE) [4, 11] and
Symbiotic Bid-Based GP (SBB) [10].

Teams are built in two different ways. In CCEA, SBB,
and IE, a certain number of individuals are selected from
the population to form a team. Therefore, the problem
of credit assignment has to be solved to share team fitness
among team members according to their contribution to a
solution, preferring team members with non-overlapping be-
haviors [15]. A limitation of CCEA and IE, when compared
to SBB, is that a priori knowledge is needed to decide the
number of individuals required in a team; such information
may sometimes be not available. The other way to form a
team, like in GP teaming and OET, is to explicitly specify
team representation and team composition. Teams are then
treated as objects of evolution, and their survival probability
fully affects their members’. The strong coupling between
teams and their members eliminates the credit assignment
problem, but it also misjudges individual contribution based
only on collaborative performance; as a result, good team
members are at the risk of loosing reproductive opportuni-
ties because they might be teamed with free-riders or less fit
individuals. In addition, the problem decomposition has to
be done manually.

To create successful teams, collaboratively members must
work to improve the performance of the team as a whole,
and individually they must be relatively successful at their
own distinct subtasks [14]. All team-based methods listed
above define a team fitness function to meet the first crite-
rion. In every generation at least one team is formed ex-
plicitly or implicitly, and has its fitness evaluated. Team
fitness shapes the interactions between team members, and
guides evolution to approach the goal of cooperation. Unfor-
tunately, only some of the methods take advantage of such
a measurement to optimize team performance through team
competition; GP Teaming considers team fitness at group re-
production, while OET and SBB at survival selection. With
respect to the second criterion, obviously individual fitness
is required. However, only GP Teaming, OET, and IE de-
fine individual fitness. Without such an accurate measure,
according to [14, 19], even though teams perform relatively

1CCEA can be regarded as a special case of team-based
methods. Although it does not define teams explicitly, it
forms teams temporarily at individual fitness evaluation.

well, their members tend to perform relatively poor, which
prevents further improvement of team performance.

3. MULTILEVEL GP
In nature, the success of cooperation can be witnessed at

all levels of biological organizations. A growing number of
biologists have now come to believe that the theory of group
selection is the explanation [1]. Individuals who cooperate
with others group members, such when hunting as a team
or watching predators for others, have a greater chance to
survive severe competition.

In group selection theories [16, 17, 20], individuals are di-
vided into groups, where they only interact with members
of the same group. Selection operates within groups and
between groups. Within-group selection equals natural se-
lection as commonly understood; it selects individuals in a
group proportional to fitness. Individuals, therefore, com-
pete against each other in the pursuit of their own interests.
Between-group selection, in contrast, examines the total pro-
ductivity of groups, and prefers the group with the best
performance or the group whose individuals cooperate best.
Hence it forces individuals to coadapt so that a cohesive
group can be formed. It also resolves and reduces conflicts
within groups, because conflicts would compromise group
performance. In short, competition between groups encour-
ages the emergence of cooperation within groups. One key
point in group selection theory is to relate individual repro-
duction probability to group performance; for example, in
reproduction or survival selection, a group is always selected
first, from which an individual is selected as parents or for
replacement. Individuals and groups are relative in group
selection models: groups can be regarded as individuals on
a higher level, so that a new level of dynamics can act upon
them. In this way, a hierarchical or nested structure can be
constructed. This new perspective is now called multilevel
selection (MLS) theory [16].

Inspired by MLS, Wu and Banzhaf [19] proposed a new
computational multilevel selection framework. This frame-
work extends evolution from individuals to multiple group
levels, through which cooperative solutions can be hierarchi-
cally built out of simple ones. Multilevel Genetic Program-
ming (MLGP) is a new genetic programming variant based
on this framework. To better understand the working mech-
anism and features of MLGP, we consider MCC problems as
an example. Before a detailed description of MLGP, we de-
fine, first, the representation of individuals and groups, and
their fitnesses functions for MCC problems.

MLGP evolves two types of entities: individuals and groups.
Individuals in the context of MCC are binary classifiers
whose chromosome contains a program evolved by Linear
GP and a class label. During training phase when given an
input example, if an individual’s program returns a value
greater than 0, then this individual is said to be accurate at
classifying the input data provided their class label matches;
otherwise, this individuals misclassifies the input data. The
individual fitness, therefore, is defined as the following:

fi = TPRi × (1− FPRi)
2 (1)

where TPRi and FPRi are the true positive rate (TPR) and
false positive rate (FPR) of individual i, respectively. The
FPR is given more weight here to encourage low misclassifi-
cation errors.
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Groups are compositions of existing individuals and groups.
Their fitness is as follows:

gj =

n∑
i=0

fi

n
× Ccovered

Ctotal
× Ncorrect

Ntotal
×
√

2 +GSj

2×GSj
(2)

where the first term is the average individual fitness of group
j, the second term is the class coverage, which is the number
of classes covered by group j over the total number of classes
in the training dataset, the third term is the data coverage,
defined as the number of correctly classified data samples
by group j over the total number of training data samples,
and the last term is a normalized term to control the size
of group j (GSj). The second and third terms together rate
group coverage. Obviously, this fitness function is a measure
of how group members collaboratively increase overall data
coverage on all classes and individually maximize their own
classification accuracy with as few members as possible.

MLGP, as shown in Algorithm 1, is completed in 5 steps:

Algorithm 1: Multilevel Genetic Programming

1 P ← Initialize_Population(N);
2 Evaluate_Individual_Fitness (P );
3 while population does not converge or maximum

generation is not reached do
4 for i ← 0 to m do
5 gp ← Reproduce_a_Group(P);
6 Evaluate_Group_Fitness(gp);
7 Add_a_Group_to_Population(gp, P);

8 end
9 for i ← 0 to n do

10 idv ← Reproduce_an_Individual(P);
11 Evaluate_Individual_Fitness (idv);
12 Add_an_Individual_to_Population(idv, P);

13 end
14 Niching_on_Individuals ();
15 Niching_on_Groups ();
16 P ′ ← Survival_Selection (P,N,M);
17 P ← P ′;
18 end

Initialization Line 1 and 2 randomly initialize the popu-
lation with N individuals, each with a unique ID. Individuals
become the lowest level in the hierarchical structure. Class
labels from training datasets are randomly assigned to in-
dividuals as their class labels. Individuals are independent
and competitive with each other, without being aware of
collaborative goals.

Evolution on group levels Line 4 to 8 explain the evo-
lution on group levels. In every generation, up to m new
groups are created by three evolutionary operators, i.e. co-
operation, crossover and mutation, with a user-defined prob-
ability. Cooperation mixes individuals and groups on all
levels together, from which two entities are selected to form
a new group. If individuals with the same ID appear in a
group, only one individual is kept. Crossover and mutation,
in contrast, select parents from groups only. Crossover ex-
changes individuals in two groups; individuals with the same
class labels are exchanged with priority; otherwise, arbitrar-
ily selected individuals are exchanged. Mutation adds or
removes an individual from a group. The individual being
added is selected from the individual pool (i.e. individuals

on the lowest level). The probability of selection, unless
specified, is proportional to fitness. Once a new group is
created, its fitness is evaluated. The framework requires to
check the validation of a group before adding it to the popu-
lation. This eliminates free riders from groups and prevents
group sizes from increasing unnecessarily. For this specific
application, the validation is maintained by the last term in
group fitness function (see Equation 2). Free riders result
in a bigger group without improving data coverage, which
diminishes team fitness. Therefore, such groups will not be
favored by between-group selection.

Evolution on the individual level Line 9 to 13 are
about producing no more than n offspring with new IDs on
the individual level. To select a parent individual for repro-
duction, a group has to be selected first based on fitness,
from which an individual is selected with uniform proba-
bility. Uniform selection, as opposed to the roulette wheel
selection suggested by the framework, is employed in within-
group selection, because individuals all contribute to achieve
cooperation despite their fitness. Crossover exchanges ran-
domly selected program segments between two parents, while
mutation copies, deletes, adds, swaps, and changes instruc-
tions in an individual’s program with predefined indepen-
dent probabilities. The fitness of new individuals is evalu-
ated. Individuals are evolved separately from groups, simply
because individuals are the most basic building blocks, and
only when individuals have fully exploited their local envi-
ronment, will it be possible to find optimal groups.

Niching Line 14 and 15 conduct niching on individuals
and groups. Preserving diversity is mandatory on individual
and group levels with the purpose of maintaining all subcom-
ponents in final solutions. A revised fitness sharing is used
here: due to the specialty of MCC problems, the similarity
of two individuals is measured on their phenotypes; that is,
we consider the number of data examples shared between
two individuals, as similar individuals will have similar data
coverage. To do so, we establish a niche for each individual,
when the data overlap between this individual and others
exceeds a threshold. If this individual does not have the
best fitness in the niche, its fitness has to be reduced by the
following equation

fi = fi ∗
(
1− Avgioverlap

TP i

)
(3)

where Avgioverlap is the average data overlap between indi-
vidual i and others in its niche, and TP i is the true positive
of individual i. The advantage of considering this fitness
sharing is that it preserves diversity but not at the expense
of the best individuals in each niche. Individuals with differ-
ent class labels have no need to share because they have no
overlap. Niching on groups is conducted in a similar manner
except that groups only share fitness with others having the
same set of class labels. This approach attempts to save the
best groups with various granularity in the population.

Survival selection The population size is doubled after
the evolution of individuals and groups. The survival selec-
tion on Line 16 and 17 reduces the population to its original
size by saving the best N individuals and M groups for the
next generation.

The above steps will be repeated until a predefined termi-
nation criterion is reached, e.g. the maximum generation, a
desired fitness or accuracy.

In summary, MLGP uses a bottom-up approach to build
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complex solutions from simple subcomponents via the coop-
eration operator. Group size and the role played by each
member, instead of being declared a priori, are automati-
cally deduced through evolution. MLGP also satisfies the
two criteria of creating successful teams: both group fitness
and individual fitness are defined. In addition, individuals
and groups are both treated as the objects of evolution; that
is to say, both are optimized. This distinguishes MLGP from
the other five team-based approaches. The second difference
is that MLGP cannot select an individual for reproduction
without first selecting a group on fitness. The ability to co-
operate, not just fitness, is always considered at individual
selection. This important feature also eliminates the credit
assignment problem, as members in a cooperative group,
despite their individual fitness, will have a higher chance to
reproduce.

4. EXPERIMENTAL SETUP
The complexity of classification tasks depends on various

data features, such as the separability of classes, dimen-
sionality of the feature space, sparseness of available sam-
ples, and the number of classes. To find out how MLGP
performs when encountering complexity, we selected seven
datasets from UCI data repository [6]: ANN Thyroid Dis-
ease (Thyroid), Cleveland Heart Disease (Heart), Statlog
Shuttle (Shuttle), Bupa Liver Disorder (Bupa), Pima In-
dians Diabetes (Pima), Original Breast Cancer Wisconsin
(Cancer), and KDD Census Income (Census). The detailed
information about the datasets are summarized in Table 1.
The first three datasets have at least three classes, while
the rest only have two. Shuttle, Thyroid and Census also
have imbalanced class distribution, where the data distribu-
tion for minor classes is as low as less than 0.01%. This
property is ideal to demonstrate how the idea of group se-
lection helps to maintains individuals for both minor and
major classes. Bupa and Pima are two datasets known for
poor class separability; the rate of error has been observed
in the region of 30% across a wide range of machine learn-
ing algorithms [10]. Other reasons to select those datasets
are that they have established performance levels [9, 10, 15,
18], and they all represent real-world data, rather than arti-
ficial data. Therefore, the results obtained on those datasets
make us sufficiently confident to judge if the new computa-
tional multilevel selection framework is applicable to solve
real-world problems.

Additional data pre-processing is performed. We map cat-
egorical values into numeric values by their appearing order.
Missing values are replaced by the value of the nearest data
samples (measured by the euclidean distance) for the rele-
vant attribute.

50 runs were executed on each dataset. 10-fold cross-
validation was used to assess datasets denoted by ’*’ in Ta-
ble 1; that is five runs per partition. The function set used
in the experiments included 7 arithmetic operators: +, −,
×, ÷, cos, ln, exp, and 1 conditional operator if , which re-
turns the additive inverse of the first operand if it is smaller
than the second operand; for example if (R[x] < R[y]) then
(R[x] = −R[x]). Introns in individual programs were re-
moved by the method described in [2]. 8 registers were used
and initialized by the mean value of a randomly selected
input attribute. Java parallel programming dispatched indi-
vidual fitness evaluation and niching to 15 threads running
on 15 CPUs.

Parameters shared by all experiments are shown in Ta-
ble 2, where ProgramSizemax refers to the maximum pro-

Table 2: Classification problems parameterization.

Parameters Value Parameters Value
ProgramSizemax 48 Pcoopgp 0.5

Pxovergp 0.8 Pmutgp 0.3
Pxoveridv 0.8 Pdel, Padd 0.6

Pmut, Pswap 0.6 Pcopy 1
Rgp 0.5 Ridv 0.4

gram length, Pcoopgp, Pxovergp, Pmutgp for group cooperation,
crossover, and mutation probability, Pxoveridv for individual
crossover, Pdel, Padd, Pmut, Pswap, Pcopy for deleting, adding,
changing, swapping, and copying instructions at individual
mutation, and Rgp, Ridv for group and individual niching
radius. Parameters specific to each dataset were as follows:
the maximum generation in runs for Thyroid, and Cancer
is 2000, and 10000 for the rest. The population contains
30 individuals and 20 groups for Cancer, 60 individuals and
20 groups for Thyroid, Bupa, Pima and Census, and 140
individuals and 30 groups for Heart and Shuttle.

Two indicators were used to measure the performance of
MLGP on MCC tasks: overall detection rate (ODR) and av-
erage detection rate (ADR). ODR is defined as the number
of data samples the final solution correctly classified over
the total number of test data; ADR is defined as the av-
erage detection rate on all classes. ADR is independent of
class distribution; hence it is a good supplement to ODR,
especially for skewed datasets. Take the Thyroid dataset as
an example; only 2% of the test data are from class 1. Even
if a final solution missed all data samples in class 1, its ODR
can still reach as high as approximately 98%.

5. EVALUATION
This section presents the experiments for highlighting the

effects of group selection on MLGP and comparing the per-
formance of MLGP with traditional LGP, one population-
based CEA (XCSR), and two team-based CEAs (OET and
SBB). The results of the control algorithms, some presented
in the format of box plots/violin plots, were gathered from
[9, 10, 15, 18]. Violin plots are a combination of a box plot
and a kernel density plot which shows the probability den-
sity of the data at different values. Box plots allow us to
compare two result sets without knowing their underlying
statistical distributions. In addition, if the notches of two
boxes do not overlap, the median of the two datasets dif-
fer at the 0.95 confidence interval. The detection accuracy
mentioned in [9, 15, 18], and the multi-class detection rate
or the score in [9, 10] are equivalent to ODRs and ADRs in
our experiments, respectively.

5.1 Understanding Group Selection
One of the key concepts developed by MLS is to associate

the survival of individuals to the performance of their group.
It encourages the emergence of cooperative groups, because
only through cooperation will individuals seize the chance
to reproduce offspring. To find out if this key insight plays
the same role in computational settings, we compare MLGP
with a control algorithm, called CtrlMLGP, which functions
in the same way as MLGP, except parent individuals are
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Table 1: Summary of the datasets used in the evaluation. ’*’ indicates a dataset has no separate test set; therefore we divided
the dataset into partitions of 90% for training and 10% for test. The value in parentheses following the name of the dataset
indicates the number of features.

Type Dataset
Data Distribution

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Total

Multi-class

Thyroid (21)
Training 93 191 3488 - - - - 3772
Test 73 177 3178 - - - - 3428

Heart (13)*
Training 148 50 33 32 12 - - 275
Test 16 5 3 3 1 - - 28

Shuttle (9)
Training 34108 37 132 6748 2458 6 11 43500
Test 11478 13 39 2155 809 4 2 14500

Two-class

Bupa (6)*
Training 181 131 - - - - - 312
Test 19 14 - - - - - 33

Pima (8)*
Training 451 242 - - - - - 693
Test 49 26 - - - - - 75

Cancer (10)*
Training 413 217 - - - - - 630
Test 45 24 - - - - - 69

Census (41)
Training 187141 12382 - - - - - 199523
Test 93576 6186 - - - - - 99762

selected directly from individual pool. That is to say the
CtrlMLGP considers no group selection at reproduction.

We run the two algorithms 50 times on the Thyroid dataset,
which has 3 classes with imbalanced data distribution. The
mean classification accuracies and average class coverage
(CLS) are shown in Table 3. The ADR values apparently in-

Table 3: The average classification accuracies and class cov-
erage of MLGP and CtrlMLGP on Thyroid datasets over 50
runs. Standard deviations are listed inside of parentheses.

ODR ADRs CLS
MLGP 0.978(0.008) 0.954(0.031) 3(0.0)
CtrlMLGP 0.931(0.025) 0.595(0.070) 2.02(0.141)

dicate a performance difference between the two algorithms.
The low ADR obtained by CtrlMLGP implies it is not able
to cover all classes; on average it covers 2.02 classes out of 3.
In fact, CtrlMLGP can hardly include a classifier in groups
to cover data examples from class 1, the smallest class. Our
further investigations show that individuals evolved for class
1 normally start with a low TPR and a high FPR, i.e. a rela-
tively low individual fitness, because of very scarce training
data. Therefore, when competing against individuals who
classify data for major classes in the same population, they
are less favored given that selection is proportional to fitness.
In other words, the growth of fitness happens very slowly on
such individuals. As a result, chances of having them in the
best group are slim.

However, if we allow group selection at reproduction, the
outcome is different. Individuals are randomly selected in a
group; individuals, despite their fitness, face equal reproduc-
tion opportunities. Because such individuals provide new
data coverage, their appearance in a group surely improves
group fitness, which in turn increases their probability of be-
ing selected again. Consequently, the fitness of weak individ-
uals with unique contributions is improved much quicker in
a group than in a population. This experiment also demon-
strates the importance of individual optimization. Only
when individuals are properly explored, will it be possible
to build a good solution from them.

5.2 Classification Accuracy
We first evaluate the performance of MLGP on the four

two-class datasets. The average classification accuracies and
class coverage by the best groups collected from 50 runs
are summarized in Table 4. The violin plots of the average
ODRs and ADRs are further shown in Figure 1.

Table 4: The average classification accuracies and class cov-
erage of MLGP on four two-class datasets over 50 runs. Stan-
dard deviations are listed inside of parentheses.

Dataset ODR ADR CLS
Bupa 0.675(0.063) 0.651(0.072) 2(0.0)
Pima 0.716(0.040) 0.670(0.049) 2(0.0)
Cancer 0.968(0.013) 0.970(0.015) 2(0.0)
Census 0.854(0.019) 0.805(0.016) 2(0.0)

It is evident from Table 4 that the best groups evolved by
MLGP successfully covered both classes, even the minority
class (class 2) in Census dataset. XCSR, on the contrary,
indiscriminately labeled almost all instances in class 2 to
class 1, resulting a quite low ADR (around 0.504) [9].

We first compare the ODR box plots obtained by MLGP
and traditional LGP on Cancer dataset (See Figure 1 and
Figure 10 in [18] for details). Because the minimal ODRs
in MLGP are larger than the upper quartile (UQ) value in
traditional LGP, it follows that the notches of the two boxes
are impossible to overlap. Therefore, we can conclude that
MLGP outperforms traditional LGP on this dataset at the
0.95 confidence interval. In the case of the other datasets, we
compare ADR box plots produced by MLGP and SBB (box
plots of SBB can be found as Figure 4 in [10]). On the Cen-
sus dataset, MLGP outperforms SBB at the 0.95 confidence
interval, given the fact that the two boxes do not overlap.
On the Bupa dataset, MLGP and SBB have the same maxi-
mum and UQ ADRs, but MLGP has higher minimum, lower
quartile (LQ), and median values. On the Puma dataset,
MLGP has higher values on all statistics except the maxi-
mum value. That is to say, on both datasets SBB’s graph is
generally lower than MLGP’s graph; in addition, the ADRs
of SBB have larger variability than MLGP because of a
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Figure 1: Violin plots of ODRs and ADRs for the four two-
class datasets over 50 runs. Each box indicates the lower
quartile, median, and upper quartile. The horizontal lines
at the end of whiskers represent the maximum/minimum
values. Points outside of the boxes represent outliers to
whiskers of 1.5 times interquartile range, and points inside
of the boxes show the mean values of ODRs or ADRs.

longer interquartile range. Overall, it appears that MLGP
performs better and more consistently than SBB. However,
because the boxes overlap and the notches are not shown,
the significance of the differences cannot be checked.

We then increase the difficulty of the problem by feed-
ing MLGP three more datasets with multiple classes. The
results are detailed in Table 5 and plotted in Figure 2.

Table 5: The average classification accuracies and class cov-
erage for the three multi-class datasets over 50 runs. Stan-
dard deviations are listed inside of parentheses. Results
shown for SBB and XCSR are cited from [9], and OET from
[15]. The best values from the three approaches are shown
in bold.

Dataset ODR ADR CLS

Thyroid
MLGP 0.978(0.009) 0.950(0.041) 3(0.0)
SBB 0.960 0.935 N/A
XCSR 0.976 0.924 N/A

Shuttle
MLGP 0.999(0.001) 0.983(0.020) 7(0.0)
SBB 0.967 0.953 N/A
XCSR 0.982 0.416 N/A

Heart
MLGP 0.744(0.043) 0.688(0.072) 5(0.0)
OET 0.568(0.030) N/A N/A

All three datasets have skewed data distributions, espe-
cially Shuttle in which class 6 only has 6, out of total 43500,
data examples. However, such skewness apparently affects
XCSR most; the low ADR value implies that XSCR is not
able to detect data samples of rare classes. In contrast,
MLGP and SBB have comparable values on ODRs and ADRs.
In fact, the class coverage of MLGP shown in Table 5 clearly
indicates that best groups evolved by MLGP identified data
from all classes.

As expected, the performance of MLGP on the Heart
dataset is better than traditional LGP at the 0.95 confi-

dence interval if we compare their box plots in Figure 2 and
Figure 9 from [18]. MLGP also performs better than OET
(see Table 5) on this dataset.
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Figure 2: Violin plots of ODRs and ADRs of the best groups
for the three multi-class datasets over 50 runs. The box plots
depict the distribution of normalized ODRs and ADRs on
Thyroid and Shuttle datasets.

As shown in Table 5, MLGP outperforms SBB and XCSR
on both datasets with respect to either ODRs or ADRs. To
find out if the differences are statistically significant, we then
compare their box plots. The box plots of SBB and XCSR
(Figure 1 and 2 in [9]) were drawn using the normalized ODR
and ADR values. For fair comparison, the same normaliza-
tion procedure (see [9] for details) was applied to ODR and
ADR values in MLGP. Box plots based on the transformed
values were depicted in Figure 2. MLGP outperforms SBB
and XCSR on Shuttle at the 0.95 confidence interval on both
ODR and ADR values. However, with respect to Thyroid
dataset, all three ADR box plots have very close maximum
values, but again MLGP has the highest median, and the
shortest interquartile range; for example the LQ value of
MLGP is aligned with the median of SBB and XCSR. The
similar patterns are also observed on the ODR box plots. Be-
cause the MLGP results are highly clustered, it is difficult
to tell whether their box plots overlap or not. However, we
can safely conclude that MLGP at least performs as same
as SBB and XCSR.

In conclusion, MLGP, in terms of classification accuracies,
outperforms SBB on Census and Shuttle at the 0.95 confi-
dence interval, and performs slightly better than or at least
as good as SBB on Bupa, Pima, and Thyroid datasets. It
excels SBB in consistency on all datasets. The reason that
SBB has a diverse distribution over accuracies may partly
be due to the uniform probability selection scheme used at
within-group and between-group selection. Uniform proba-
bility selection does not distinguish individuals and groups
based on their performance (fitness). Therefore, optimiza-
tion opportunities are spread over all individuals and groups.
MLGP performs better than XCSR on skewed datasets, such
as Thyroid, Shuttle, and Census, because XCSR, as we
stated before, lacks a measurement of group performance.
MLGP also exceeds single binary classifiers evolved by tradi-
tional LGP on performance, because binary classifiers only
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focus on one class at a time, and ignore correlations with
other classes.

5.3 Solution Complexity
MLGP builds solutions hierarchically out of simple sub-

components without specifying in advance their structure.
We are interested to know how complex solutions are, es-
pecially when compared to solutions returned by SBB. The
solution complexity in this study is measured by the number
of members in a team.

Figure 3 plots the average number of individuals in the
best groups from 50 runs on the four two-class datasets. The
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Figure 3: Solution complexity of best groups on the four
two-class datasets over 50 runs.

solution complexity of SBB obtained on Bupa, Pima and
Census datasets can be found in Figure 8 of [10]. MLGP has
the same solution complexity as SBB on Bupa. However, for
the other two datasets, SBB tends to find more complicated
solutions with larger numbers of individuals than MLGP
(at 0.95 confidence interval); for example, the median values
obtained by SBB on Pima and Census are 4, while they are
3 and 2 by MLGP, respectively.

On Thyroid and Shuttle datasets, solution complexity of
MLGP is significantly smaller than SBB or XCSR (see Ta-
ble 6). It found the most compact groups on all runs, where
only one individual is used to classify every single class.

Table 6: The average solution complexity of MLGP, SBB
and XCSR for the three multi-class datasets over 50 runs.
Standard deviations are listed inside of parentheses. Results
shown for SBB and XCSR are cited from [9]. The best values
among the three approaches are shown in bold.

MLGP SBB XCSR
Thyroid 3(0.0) 9.5(0.9) 881.2(14.3)
Shuttle 7(0.0) 10.0(0) 644.8(39.4)
Heart 6.667(1.361) N/A N/A

Therefore, we can conclude that MLGP beats SBB and
XCSR in terms of solution complexity. The obvious reason
is that MLGP explicitly expresses how to control group size
with a group fitness function. Particular interesting is that
MLGP automatically keeps the solution complexity in pro-
portion to the separability of the datasets. For highly sepa-

rable datasets, MLGP returns the smallest group with each
member being responsible for one class; However, for poorly
separable datasets such as Heart, Bupa and Pima, MLGP
tends to evolve large groups in which one class is covered by
more than one individual. The results clearly demonstrate
the good problem decomposition ability of MLGP; an ap-
propriate number of subcomponents and their roles emerge
through evolution without human interference. The driving
evolutionary force behind this is the between-level selection,
which controls the hierarchical structure by screening out
invalid levels and groups.

6. DISCUSSION
So far we have demonstrated how to implement the new

computational multilevel selection framework using LGP to
solve multi-class classification problems. The experimental
findings confirm that MLGP is able to improve solution ac-
curacy and to simplify solution complexity as compared to
other approaches in the literature. However, the following
issues should be given special consideration before MLGP is
applied to new problems:

1. Evolutionary transitions. Even though not mentioned
in this paper, MLGP has the potential to be extended to an
evolutionary transition model, in which groups, depending
on their levels, become a new complex organism functioning
differently from their components. The cooperation opera-
tor would be responsible for such a transition. Instead of
simply combining individuals together, this operator could
define more specific transition rules to change the genotype
or phenotype of a new organism, thus expressing various
functions. This model, we believe, will be useful to solve
problems whose subcomponents have more complicated in-
teractions, such as agents in multi-agent systems.

2. Niching. With no exception, the framework requires to
use niching or similar techniques to maintain different par-
tial solutions in a population, from which a full solution can
be built. Designing an appropriate niching scheme, never-
theless, can be very tricky as it is strongly correlated with
the problem. Canonical fitness sharing, resource sharing or
crowding is always a good starting point. However, one
important thing to remember about fitness sharing is that
it reduces fitness of all individuals within niching radius, in-
cluding the best one in the niche. We are then facing the risk
of loosing potentially good individuals; if they are closely
surrounded by others, their fitness may degrade much faster
than worse individuals with no neighbors.

3. Group fitness definition. After multiple trials on dif-
ferent group fitness definitions, we advise to consider at
least two factors: average individual performance and over-
all group performance. Missing either of them will cause
evolution to drift to suboptimal solutions.

4. Cooperation measurement. Evidence in biology and so-
cial science suggests that excluding or penalizing free-riders
can maintain cooperation. In the same way any implemen-
tation of the framework should measure to what degree in-
dividuals cooperate in a group. Removing free-riders means
compact groups and savings on computing resources. In [19],
an individual’s contribution is judged by the number of new
strings it provided to its group. In this study, the contri-
bution was indirectly assessed in the group fitness function
jointly by the group size and overall data coverage; free rid-
ers increase group size without improving coverage. The
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Shapley value [13] in game theory is also an interesting ap-
proach to determine contributions in cooperation.

5. Parameterization. The framework extends evolution to
group levels; therefore, one needs to specify values for new
parameters namely the cooperation, crossover and mutation
rates for reproducing groups, niching radius for groups and
individuals, and the number of groups in a population. Like
any other EA, there are no universally optimal parameter
settings that suit every problem. Based on our experiments,
we suggest high cooperation and crossover rates, but a rel-
atively low mutation rate, as cooperation constructs new
groups and crossover discovers possible individual combina-
tions. The number of individuals and groups in a population
will vary depending on specific problems. Complex problems
normally need a large individual pool in order to preserve
all potential subcomponents. The group pool is normally
smaller than the individual pool, and its size increases as
the individual pool grows, but with a smaller rate.

7. CONCLUSION
In this paper, we introduced a multilevel genetic program-

ming (MLGP) system, based on the new computational mul-
tilevel selection framework proposed by Wu and Banzhaf
[19], to tackle the evolution of cooperation. MLGP, with the
help of group selection and a cooperation operator, extends
evolution from individuals to multiple group levels. As a
result, this process facilitates hierarchically constructed co-
operative solutions out of simple ones. The applicability
of MLGP is verified on multi-class classification problems,
in which 7 benchmark datasets with different data features,
such as non-linearity, skewed data distribution, and large
feature space were tested. The results show that MLGP,
when compared to traditional GP, OET, XCSR and SBB, is
able to improve solution accuracy and to simplify solution
complexity. In the future, we plan to study the evolutionary
transition by MLGP, and its potential applications.
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