
Self Modifying Cartesian Genetic Programming:
Finding Algorithms that Calculate pi and e to Arbitrary

Precision

Simon Harding
Department Of Computer

Science
Memorial University

Newfoundland, Canada
simonh@cs.mun.ca

Julian F. Miller
Department of Electronics

University of York
York, UK

jfm7@ohm.york.ac.uk

Wolfgang Banzhaf
Department Of Computer

Science
Memorial University

Newfoundland, Canada
banzhaf@cs.mun.ca

ABSTRACT
Self Modifying Cartesian Genetic Programming (SMCGP)
aims to be a general purpose form of developmental genetic
programming. The evolved programs are iterated thus
allowing an infinite sequence of phenotypes (programs) to
be obtained from a single evolved genotype. In previous
work this approach has already shown that it is possible to
obtain mathematically provable general solutions to certain
problems. We extend this class in this paper by showing
how SMCGP can be used to find algorithms that converge
to mathematical constants (pi and e). Mathematical proofs
are given that show that some evolved formulae converge to
pi and e in the limit as the number of iterations increase.

Categories and Subject Descriptors
I.2.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming; D.1.2 [Software]: Automatic Programming

General Terms
Algorithms

Keywords
Genetic programming, developmental systems

1. INTRODUCTION
Self Modifying Cartesian Genetic Programming (SM-

CGP) is a form of developmental genetic programming,
based on Cartesian Genetic Programming [9]. The concept
is that CGP programs, which are directed graphs, contain
not only functions for computation, but also functions that
can change the program during run time [3].
SMCGP has previously been applied to a number of

different tasks including finding scalable, general solutions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’10, July 7–11, 2010, Portland, Oregon, USA.
Copyright 2010 ACM 978-1-4503-0072-8/10/07 ...$10.00.

to digital circuits [6], finding sequences and mathematical
results [5] and evolving learning algorithms [4].

Here, we demonstrate the use of SMCGP to find programs
that approximate the fundamental constants π (3.1415...)
and e (2.7182...). Two different approaches are used,
one is to find a program that acts as a mathematical
approximation, the other is to find a program that outputs
the digits as a sequence.

We provide proofs for two of the evolved formulae (one
for pi and one for e) that they rapidly converge to the
constants in the limit of large iterations. We consider this
work to be significant as evolving provable mathematical
results is a rarity in evolutionary computation. Streeter
and Becker used tree-based GP to discover mathematical
approximations to well known mathematical series, such as
the Harmonic series and also new Padé approximants to
mathematical functions [13]. However, they do not find
exact analytical results that can be shown to converge
in the limit1. Schmidt and Lipson used GP to discover
the known Hamiltionians and Langrangians of mechanical
systems purely by using GP symbolic regression techniques
on data acquired through motion tracking [11]. Schmidt and
Lipson investigated using GP for solving iterated function
problems (i.e. f(f(x)) = g(x)) and they show that one
evolved function provably makes f(f(x)) converge to x2 − 2
in the limit [10]. Spector et al showed that GP could be
used to evolve hitherto unknown algebraic expressions that
are important in the mathematics of finite algebras and
are orders of magnitude shorter than those that could be
produced by prior mathematical methods [12].

The plan of the paper is as follows. In section 2 we discuss
the SMCGP technique and the recent improvements made to
the previously published method. We discuss and compare
results for various ways of applying inputs (terminals) to the
SMCGP programs. The SMCGP function set consists of
both computational functions and self-modifying functions.
These are discussed in section 3. We discuss two distinct
methods and results for evolving algorithms that could
approximate π in sections 4 and 5. For one method we
show that SMCGP can rapidly find potentially novel and
fast converging mathematical approximations to π. Our
second approach where the digits were evolved as a sequence

1Indeed, they note on page 281 that finding such results
would be a “striking and exciting application of genetic
programming”

579

is not as effective, but still a plausible methodology for
approximating π. In section 6 we discuss experiments and
results for the case of approximations to e, and find an
algorithmic approximation that is similar to the well known
Bernoulli equation. We close with conclusions and future
work.

2. SMCGP
As in CGP, in SMCGP each node in the directed graph

represents a particular function and is encoded by a number
of genes. The first gene encodes the function of the node.
This is followed by a number of connection genes (as in CGP)
that indicate the location in the graph where the node takes
its inputs from. However SMCGP also has three real-valued
genes which encode parameters that may be required for
the function (primarily self modification (SM) functions use
these and in many cases they are truncated to integers when
necessary, see later). Section 3 details the available functions
and any associated parameters. In this paper all nodes take
two inputs, hence each node is specified by seven genes.
As in CGP, nodes take their inputs in a feed-forward

manner from either the output of a previous node or from a
program input (terminal). We use relative addressing in
which connection genes specify how many nodes back in
the graph they are connected to. Inputs are acquired to
programs through the use of special node functions, that we
call INP. Outputs are generated using OUTPUT functions.
The evaluation of a genotype is as follows: The initial

phenotype is a copy of the genotype. This graph is then
executed, and if there are any modifications to be made,
they alter the phenotype graph.
The genotype is invariant during the entire evaluation of

the individual. When executed, the phenotype is initially
a copy of the genotype, and all modifications are made to
the phenotype. In subsequent iterations, the phenotype will
usually gradually diverge from the genotype. The encoded
graph is executed in the same manner as standard CGP, but
with changes to allow for self-modification. The graph is
executed by recursion, starting from the output nodes down
through the functions, to the input nodes. In this way, nodes
that are unconnected are not processed and do not affect the
behavior of the graph at that stage. For function nodes (e.g.
+,-,/,*) the output value is the result of the mathematical
operation on input values.
Each active (i.e. expressed) graph manipulation function

(starting on the leftmost node of the graph) is added to a“To
Do” list of pending modifications. After each iteration, the
“To Do” list is parsed, and all manipulations are performed
(provided they do not exceed the number of operations
specified in the user defined “To Do” list length). The
parsing is done in order of the instructions being appended
to the list, i.e. first in is first to be executed. The length
of the list can be limited as manipulations are relatively
computationally expensive to perform. Here we limit
the length to just 2 instructions, which simplifies human
analysis. All graph manipulation functions use extra genes
as parameters. This is described in section 3. Complete
details of SMCGP can be found in [4].
We use an (1+4) evolutionary strategy for the experiments

in this paper as in CGP. We have used a relatively high
(for CGP) mutation rate of 0.1. In these experiments,
for simplicity, we chose to make all the rates the same.
Mutations for the function type and relative addresses

themselves are unbiased; a gene can be mutated to any other
valid value.

For the real-valued genes, the mutation operator can
choose to randomize the value (with probability 0.1) or
add noise (normally distributed, σ20). The evolutionary
parameters we have used have not been optimized in any
way, so we expect to find much better values through
empirical investigations.

Evolution is limited to 10,000,000 evaluations. Trials that
fail to find a solution in this time are considered to have
failed.

3. FUNCTION SET
The function set is defined in two parts. The computa-

tional operations as defined in Table 1. The other part is
the set of modification operators. These are common to all
data types used in SMCGP.

The self-modifying genotype (and phenotype) nodes con-
tain three double precision numbers, called “parameters”.
In the following discussion we denote these P0,P1,P2. We
denote the integer position of the node in the phenotype
graph that contained the self modifying function (i.e. the
leftmost node is position 0), by x. In the definitions of the
SM functions we often need to refer to the values taken by
node connection genes (which are all relative addresses). We
denote the jth connection gene on node at position i, by cij .

The modification functions (with the short-hand name)
are defined in Table 1.

4. EVOLVING APPROXIMATIONS TO π

There exist several iterative approaches to approximating
π.

For example, the Gregory-Leibniz series:

π =
4

1
− 4

3
− 4

5
− 4

7
− 4

9
. . .

This series is simple, but requires a large number of
iterations to reach good accuracy. Another method uses
recursion to find an approximation:

π = n(tan(π/n)−
tan3(π/n)

3
−

tan5(π/n)

5
−

tan7(π/n)

7
. . .)

for n = 1, 2,

Curiously, there has been little work on evolving approxi-
mators π, despite it being a well defined problem with many
human designed solutions to compare against.

In [7], Krohn used an artificial developmental system
based on fractal proteins [1] to produce approximations to
π using two different approaches. The first approach was
to generate the digits as a binary sequence. The second,
and more successful, approach was to use the output of the
developmental system to provide values for the equation:

I∑
i=1

∑N
n=2 Bn,i∏i
t=1 B1,i

where I is the number of developmental iterations, N is
the number of behavioural genes (an output of the evolved
program) and Bn,i is the output of the n

th behavioural gene
at iteration i.

580

Basic
Delete (DEL) Delete the nodes between (P0 + x) and (P0 + x+ P1).
Add (ADD) Add P1 new random nodes after (P0 + x).
Move (MOV) Move the nodes between (P0 + x) and (P0 + x+ P1) and insert after (P0 +

x+ P2).
Duplication

Overwrite (OVR) Copy the nodes between (P0+x) and (P0+x+P1) to position (P0+x+P2),
replacing existing nodes in the target position.

Duplication (DUP) Copy the nodes between (P0 + x) and (P0 + x+ P1) and insert after (P0 +
x+ P2).

Duplicate Preserving Connections
(DU3)

Copy the nodes between (P0 + x) and (P0 + x+ P1) and insert after (P0 +
x + P2). When copying, this function modifies the cij of the copied nodes
so that they continue to point to the original nodes.

Duplicate and scale addresses (DU4) Starting from position (P0+x) copy (P1) nodes and insert after the node at
position (P0 + x+ P1). During the copy, cij of copied nodes are multiplied
by P2.

Copy To Stop (COPYTOSTOP) Copy from x to the next “COPYTOSTOP” or ‘STOP” function node, or
the end of the graph. Nodes are inserted at the position the operator stops
at.

Connection modification
Shift Connections (SHIFTCONNEC-
TION)

Starting at node index (P0 + x), add P2 to the values of the cij of next P1.

Shift Connections 2 (MULTCON-
NECTION)

Starting at node index (P0 + x), multiply the cij of the next P1 nodes by
P2.

Change Connection (CHC) Change the (P1mod3)th connection of node P0 to P2.
Function modification

Change Function (CHF) Change the function of node P0 to the function associated with P1.
Change Parameter (CHP) Change the (P1mod3)th parameter of node P0 to P2.

Numeric functions
No operation (NOP) Passes through the first input.
Add, Subtract, Multiply, Divide
(DADD, DSUB, DMULT, DDIV)

Performs the relevant mathematical operation on the two inputs.

Const (CONST) Returns a numeric constant as defined in parameter P0.√
x, 1√

x
Cos, Sin, TanH, Absolute

(SQRT, DRCP, COS, SIN, TANH,
DABS)

Performs the relevant operation on the first input (ignoring the second
input).

Average (AVG) Returns the average of the two inputs.
Node index (INDX) Returns the index of the current node. 0 being the first node.
Input count (INCOUNT) Returns the number of program inputs.
Min, Max (MIN, MAX) Returns the minimum/maximum of the two inputs.

Table 1: The function set.

4.1 Fitness Function
Our fitness function was configured to produce a program

where subsequent iterations of the program produced more
accurate approximation to π. Programs were allowed to
iterate for a maximum of 10 iterations. If the output after
an iteration did not better approximate π, evaluation was
stopped and a large fitness penalty applied. Note that it is
possible that after the 10 iterations the output value diverges
from π, and the quality of the result would therefore worsen.
The fitness score of an individual is defined as the

absolute error of the last output. In addition, the string
representation of the output was checked to ensure that all
digits matched correctly. Using doubles in .Net limits the
precision to 14 decimal places (i.e. 3.14159265358979).
Four variants of the fitness function were tested, each

with different configurations of inputs given to the programs,
these are:

A One input : the current iteration. Functions can
be built using the current iteration counter as a
parameter.

B One input : numeric constant (1). The program has
no real input, and therefore has to build a structure
that performs the iterative process.

C Two inputs : the current iteration and last outputted
value. This form can, in some sense, be viewed as
recurrent, as programs can depend on the previous
output.

D Two inputs : numeric constant (1) and last outputted
value. This form can also be viewed as recurrent, as
programs can depend on the previous output.

581

Figure 1: Visualization of SMCGP program that produces an approximation to π. Each row is a different
time step.

4.2 Results
The statistical results for these experiments are shown in

Table 2. Each experiment was conducted approximately 150
times. The standard deviations are large and overlap, which
means that the algorithms appear to perform similarly.

Config. % Success Avg. Evals Min., Avg. Iterations
A 96.7 8,952,441 3, 5.95
B 99.4 2,905,673 3, 5.49
C 96.2 4,953,518 3, 6.78
D 98.7 2,146,348 3, 5.90

Table 2: Finding π using various inputs to the
evolved programs. Experiment types: (A)One
input, the current iteration; (B)One input, numeric
constant (1); (C) Two inputs,the current iteration
and last outputted value. (D): Two inputs, numeric
constant (1) and the last outputted value. Iterations
refers to the number of times the program has to be
iterated before it reaches π to 14 decimal places.

4.3 Example π Generator
Figure 1 shows the output of an evolved SMCGP program

that accurately converges to π. Table 3 shows the output of
the program at each time step. As the program is relatively
short, it was possible to extract the evolved generating
function:

f(i) =

{
cos(sin(cos(sin(0)))) i = 0

f(i− 1) + sin(f(i− 1)) i > 0
(1)

Equation 1 is a nonlinear recurrence relation. However it
can be shown that it converges rapidly to π. When i = 10,
the output matches the first 2048 digits of π.

To prove mathematically that when Eqn 1 is iterated it
converges exactly to pi we note that the value of π is a
fixed point of equation 1 since x = x+ sinx is obeyed when
x = π. It is stable since f ′(x) = 1+ cos(x) = 0 when x = π.
How rapidly it converges to π can be seen from the following

Iter. Output Error Output Correct
0 3.142 0 0
1 2.475 0.666366745392881 0
2 0.898 2.24379742136643 0
3 0.116 3.02575192260092 0
4 2.589E-4 3.14133374812244 3
5 2.892E-12 3.1415926535869 11
6 0 3.14159265358979 14
7 0 3.14159265358979 14
8 0 3.14159265358979 14
9 0 3.14159265358979 14

Table 3: Output from program shown in figure 1.
Output is error (to 3 decimal places) is the difference
between π (.Net’s Math.PI) and the output from the
program. Correct digits is the count of the correctly
matching digits after the decimal point. Errors will
appear to be 0 when the actual error is very small.

argument. Suppose at some iteration m, f(m) is close to π.
Then we can write f(m) = π−δ, where δ is a small quantity.

Then from Eqn. 1 f(m+ 1) = π − δ + sin(π − δ) ≈ π − δ3

3!
.

So it approaches pi cubically.

5. EVOLVING THE DIGITS OF π AS A SE-
QUENCE

Evolving patterns has been a focus of much work in
developmental systems (i.e. French flags). Here we take the
view that pi could be also be viewed as a one dimensional
complex pattern (of repeating digits). Thus we formulate
the task here to be that of finding a program that on each
iteration will output the next digit of π. The way this is
done is as follows. The first time the program is executed
it outputs 3. Then the self modification is applied, the
program executed again, and it should output 1. Then 4,1,5,
and so on.
The program inputs were set to the iteration, i and the
previous output value. The function set used is the same
as that described above but used with an integer data type.

582

Iteration Description

0 CTS (Copy To Stop) returns the constant 3.29, but as the program is interpreted as integers, the
value is truncated to 3.

1 INP returns the first input, which is the current iteration (1). The CTS node returns the DSQRT
(square root) of 1.

2 CTS returns the truncated value of the constant i.e. 4.
3 The CTS node returns the square root of the square root of the current iteration (3). As a truncated

integer, this is 1.
4 Again, the CTS node returns a value (5) from a constant.
5 Here the output comes from adding two constants 4 and 5, to return 9.
6 Here the CTS node connects to a MOV (Move) function which is returning the square root of 6 (as

integer) i.e 2.
7 The output (6) is the sum (DADD) of 4 and 2 (which is the integer square root of 7).
8 Here, the output comes from the average (AVG) of 4 and 6 (via the same calculations as iteration

7), to get 5.
9 Here the input value is 9, so the square root function now outputs 3. The left most CTS function

returns 3 (via the MOV node connected to the top input). This is because of the order of modification
nodes has reached a limit on the ToDo list, and the operation has failed - changing which of the
inputs is selected as the output.

Table 4: Description of operations occurring in figure 2.

The fitness function stopped iterating the program when
either an incorrect digit or a number < 0 or > 9 was output.
Fitness is defined as the total number of correct digits output
before making a mistake. Evolution was allowed to continue
for 10,000,000 evaluations (or 100 digits of π).

5.1 π Results
The experiment was repeated 310 times (with 31 comput-

ers running 10 experiments each). The longest sequence
found was 31 correct digits. The shortest was 5 correct
digits, and the average number of correct digits was 14.
Figure 2 shows the development stages of the first 10

steps of this program, and a description of each step can
be found in table 4. Each step outputs the next digit of π,
starting with 3 in the first step. The program consistently
uses the final node, a Copy To Stop (CTS) function, as its
output. This is because no OUTPUT nodes were used, so
the graph runner defaulted to using the last node in the
graph as output.

6. EVOLVING APPROXIMATIONS TO E

Aside from π, e is one of the most famous constants in
mathematics. There is a well known approximation to e
given by (often known as Bernoulli’s formula) [8] :

lim
y→∞

(1 +
1

y
)y

This series approaches e rather slowly. However recent
faster approximations have been found by Brothers and
Knox [2]. For instance:

lim
y→∞

(y + 1)
11y
6 (y − 1)

5y
6 (

2y + 1

2yy+1
)
8
3

6.1 Results
Using the same fitness function as with π, evolving

solutions for e was found to be significantly harder, the
success rate is shown in table 6. However, high quality
approximations were found as detailed in the following
section. It is suspected that the use of powers in the

Iteration Output Error Output Digits
0 0.470 2.248310938642 0
1 4.162E-4 2.71786562898987 2
2 2.723E-5 2.71825460295116 4
3 1.722E-6 2.71828010695015 5
4 1.079E-7 2.71828172054962 6
5 6.749E-0 2.71828182170977 8
6 4.219E-10 2.71828182803714 9
7 2.637E-11 2.71828182843268 10
8 1.648E-12 2.7182818284574 11
9 1.030E-13 2.71828182845894 11
10 6.2178E-15 2.71828182845904 13
11 4.441E-16 2.71828182845904 13
12 0 2.71828182845905 14

Table 5: Output from program shown in figure
3. Output is error (to 3 d.p.) is the difference
between ei (.Net’s Math.E) and the output from
the program. Digits is the count of the correctly
matching digits after the decimal point.

calculation produces nonlinearity in the fitness scoring,
which makes evolution less able to find solutions.

Config. Correct digits Successes Runs
A 3.75 6 528
B 3.79 2 532
C 3.61 5 542
D 3.59 1 526

Table 6: Finding e using various inputs to the
evolved programs. The success rate was very low,
with the best performing approach being A with 6
successful solutions found in 528 runs. A successful
solution occurs when 14 digits are matched.

583

Figure 2: The first 10 developmental steps of a program that produces a π digits sequence.

6.2 Example e Generator
Figure 3 shows the output of an evolved SMCGP program

that accurately converges to e. Output from the evolved
program is show in table 5. The program was first tested
using an arbitrary precision maths utility to confirm the
program is correct. At 2048 significant figures of precision,
by iteration 100 the solution is correct to the first 121 digits,
with an error of 4.386165e− 122.
At the top of the figure is seen a schematic of the

evolved genotype. The node functions are written above the
nodes. The initial genotype has 20 nodes. The next three
graphs show the phenotypes at the first, second and third
iterations. The ToDo list length was 2 so that only two SM
functions are obeyed in each genotype/phenotype. The SM
functions CHF and DU4 are used. The CHF function has
the effect of changing the second COS function (at position
1) into DADD and the DU4 function results in nodes 1 to
3 being copied after node 3. Thus on each iteration the
graph increases by three nodes: DADD, DADD and AVG
respectively.
Consider the first iteration. The nodes from 4 to 22 form

a block of nodes that merely shifts along at each iteration.
We calculate what function these nodes calculate from an
input x (supplied by the previous node). We have labeled
the outputs of the nodes using x with the subscript being
the same as node label. We obtain the following equations:

x4 = 2x
x5 = 2x4 = 4x
x6 = x5 = 4x
x7 = x6x6 = 16x2

x8 = x5 + x7 = 4x+ 16x2

x9 = x8 = 4x+ 16x2

x10 =
√
x8 =

√
4x+ 16x2

x11 = x9/x7 = 1 + 1
4x

x12 = x11
x10 = (1 + 1

4x
)
√

4x+16x2

x17 = x12 = x12

x18 = x17 = x12

x19 = x18 = (1 + 1
4x

)
√

4x+16x2

The value of x arises from the COS node at position 0 and
the sequence of DADD, DADD, AVG nodes. The arguments
of COS are zero so it outputs 1. The result of applying
DADD, DADD, AVG is to produce the value 4. So at the
first iteration x = x3 = 4. Each iteration multiplies x by 4.
Thus we can write x = 4it where it is the iteration. Clearly
as the iterations increase x becomes very large. Defining
y = 4x = 4it+1 we can write the equation for the output x19

as

x19 = (1 +
1

y
)
y
√

1+ 1
y (2)

Eqn 2 tends to the form of a well-known Bernoulii formula
(see above). Thus we have established mathematically that
the evolved formula converges to e in the limit of large
iterations.

7. CONCLUSIONS
SMCGP has been shown to successfully find good approx-

imations to both π and e. The evolved approximation to e is
a special case of previously known solution. We were unable
to find a known solution similar to the found π approxi-
mation. We would speculate that this approach should be
able to find novel approximations to both constants, however
there is obvious difficulty in comparing a large number of
generated solutions to a large body of known solutions.

584

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

x
3

x
4

Figure 3: SMCGP genotype and three iterations of approximation to e

We also offer the problems of approximating to pi and e
as benchmarks for developmental methods. Clearly they are
difficult problems and also they are intrinsically interesting
(the problem of finding e appears to be especially difficult).
Generating sequences of digits in a sequence such as π

shows that SMCGP can generate programs that produce
arbitrary sequences. We were mildly disappointed that we
were unable to find a program that could generate the digits
precisely, however the known solutions to this do not operate
in base 10 2. Moving to different numeric representations
may allow us to reproduce this type of result.
We also expect that SMCGP could be used to try to

discover hitherto unknown but provable algorithms that sum
mathematical series or converge to particular constants.
It was interesting to see that the self modifying aspects of

SMCGP were used in both the solutions examined. In the
approximation to e, the self modifying functions found a
module that corresponded to a complicated power function.
Conceivably such a function could have been evolved with
a standard implementation of CGP, but we suspect that
the self modification made it easier to discover iterative
solutions. SMCGP can chose to ignore the SM functions,
and revert in operation to CGP. If the SM was not useful
then they should be ignored. We hope to investigate this in
future work.

8. ACKNOWLEDGEMENTS
We would like to thank Jon Rowe for his valuable com-

ments. WB acknowledges funding from Atlantic Canada’s
HPC network ACENET and by NSERC under the Discovery
Grant Program RGPIN 283304-07.

2Such as the BBP Formula (described here:
http://mathworld.wolfram.com/BBPFormula.html)that
operates in base 16.

9. REFERENCES
[1] P. Bentley. Fractal proteins. Genetic Programming and

Evolvable Machines, 5(1):71–101, Mar. 2004.

[2] H. J. Brothers and J. A. Knox. New closed-form
approximations to the logarithmic constant e.
Mathematical Intelligencer, 20(4):25–29, 1998.

[3] S. Harding, J. F. Miller, and W. Banzhaf.
Self-modifying cartesian genetic programming. In
H. Lipson, editor, Genetic and Evolutionary
Computation Conference, GECCO 2007, Proceedings,
London, England, UK, July 7-11, 2007, pages
1021–1028. ACM, 2007.

[4] S. Harding, J. F. Miller, and W. Banzhaf. Evolution,
development and learning with self modifying
cartesian genetic programming. In GECCO ’09:
Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pages 699–706, New
York, NY, USA, 2009. ACM.

[5] S. Harding, J. F. Miller, and W. Banzhaf. Self
modifying cartesian genetic programming: Fibonacci,
squares, regression and summing. In L. Vanneschi,
S. Gustafson, et al., editors, Genetic Programming,
12th European Conference, EuroGP 2009, Tübingen,
Germany, April 15-17, 2009, Proceedings, volume
5481 of Lecture Notes in Computer Science, pages
133–144. Springer, 2009.

[6] S. Harding, J. F. Miller, and W. Banzhaf. Self
modifying cartesian genetic programming: Parity. In
A. Tyrrell, editor, 2009 IEEE Congress on
Evolutionary Computation, pages 285–292,
Trondheim, Norway, 18-21 May 2009. IEEE
Computational Intelligence Society, IEEE Press.

585

[7] J. Krohn, P. J. Bentley, and H. Shayani. The challenge
of irrationality: fractal protein recipes for pi. In
GECCO ’09: Proceedings of the 11th Annual
conference on Genetic and evolutionary computation,
pages 715–722, New York, NY, USA, 2009. ACM.

[8] E. Maor. e: The Story of a Number. Princeton
University Press, 1994.

[9] J. F. Miller and P. Thomson. Cartesian genetic
programming. In R. Poli, W. Banzhaf, et al., editors,
Proc. of EuroGP 2000, volume 1802 of LNCS, pages
121–132. Springer-Verlag, 2000.

[10] M. Schmidt and H. Lipson. Distilling free-form natural
laws from experimental data. Science,
324(5923):81–85, 2009.

[11] M. D. Schmidt and H. Lipson. Solving iterated
functions using genetic programming. In GECCO ’09:
Proceedings of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation
Conference, pages 2149–2154. ACM, 2009.

[12] L. Spector, D. M. Clark, I. Lindsay, B. Barr, and
J. Klein. Genetic programming for finite algebras. In
GECCO ’08: Proceedings of the 10th annual
conference on Genetic and evolutionary computation,
pages 1291–1298. ACM, 2008.

[13] M. Streeter and L. A. Becker. Automated discovery of
numerical approximation formulae via genetic
programming. Genetic Programming and Evolvable
Machines, 4(3):255–286, 2003.

586

