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Abstract. Reaction-diffusion systems contribute to various morpho-
genetic processes, and can also be used as computation models in real
and artificial chemistries. Evolving reaction-diffusion solutions automat-
ically is interesting because it is otherwise difficult to engineer them to
achieve a target pattern or to perform a desired task. However most of
the existing work focuses on the optimization of parameters of a fixed
reaction network. In this paper we extend this state of the art by also
exploring the space of alternative reaction networks, with the help of
GPU hardware. We compare parameter optimization and reaction net-
work optimization on the evolution of reaction-diffusion solutions leading
to simple spot patterns. Our results indicate that these two optimization
modes tend to exhibit qualitatively different evolutionary dynamics: in
the former, the fitness tends to improve continuously in gentle slopes,
while the latter tends to exhibit large periods of stagnation followed by
sudden jumps, a sign of punctuated equilibria.

1 Introduction

In 1952 Alan Turing [27] proposed reaction-diffusion (RD) as a possible mathe-
matical explanation for morphogenetic processes in nature, especially the forma-
tion of patterns on the skin of animals, such as zebra stripes and leopard spots.
In a reaction-diffusion system (RDS), a number of chemicals (morphogens) dif-
fuse and react in two or three dimensions within a chemical medium. An RDS
is a dynamical system usually described by a set of partial differential equations
(PDEs) that quantify the speed of diffusion of chemicals and their reactions. Un-
der some conditions, the equilibrium instability in an RDS may lead to spatial
patterns such as Turing patterns. Other well-known RD patterns include circles
and spirals in the Belousov-Zhabotinsky reaction, self-replicating spots in the
Gray-Scott system [10, 23], and diverse patterns on the surface of sea shells [18].
More complex morphogenetic processes such as the formation of net patterns in
leafs or veins [7], the formation of insect eyes and various body parts, are only
partially explained by reaction-diffusion processes, nevertheless RD remains an
important component of morphogenesis in general.

Several applications of reaction-diffusion systems exist in the literature: first,
as abstract models of biological pattern formation [6, 17, 18, 21]: feathers, leaves,
veins, nerves, body segments, and so on. More recently, they are considered as
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new substrates for unconventional computation on real chemical media, such as
reaction-diffusion computers [1]: algorithms such as image processing in vitro,
shortest path, robot controllers, and Voronoi diagrams have been proposed on
top of such chemical computers. The potential of RD in micro- and nanotechnol-
ogy is reviewed in [11], such as the fabrication of structures and devices at very
small scales. RD can also be used in models of distributed computation inspired
by chemistry, with applications to sensor networks (role assignment [22], routing
[15]), and robotics (robot controllers [5], swarm robotics [25]).

Although there is a vast literature on the mathematical analysis of various
reaction-diffusion systems, their overall design space remains poorly understood:
even very simple systems like the Gray-Scott system (composed essentially of
two chemicals and one autocatalytic reaction between them) lead to complex
analytical solutions and a very narrow region of the parameter space in which
interesting patterns occur. Therefore in many cases it makes sense to sweep RD
parameter spaces using search heuristics such as evolutionary algorithms.

There are more reasons to evolve reaction-diffusion systems. Given a desired
pattern, it is difficult to find a set of chemicals, their reactions and correspond-
ing parameters (speed of diffusion and reaction) that lead to the target pattern.
In addition, in the literature sometimes only the PDEs of an RDS are given:
deriving the corresponding chemical reactions is straightforward in some cases,
but difficult in others. Beyond parameter sweeping with a Genetic Algorithm
(GA) or other techniques, it is worth exploring the RDS design space by find-
ing the appropriate set of chemical reactions leading to a given target pattern.
This is analogous to finding a program (here, a chemical program) that solves a
given problem, therefore it can be considered as a form of genetic programming
(GP). A GP-based approach to RD evolution covers a much larger search space
than a GA-based one. Whereas the numeric integration of RD PDEs is already
computationally expensive, evolving a population of these PDEs is even more
demanding. Luckily, both GP and RD numeric integration are well suited for par-
allelization on top of GPU (Graphics Processing Unit) hardware [2, 16, 20, 24].

In this paper we compare (experimentally) parameter optimization (GA ana-
log) with reaction network optimization (GP analog) to explore the space of RD
solutions forming spot patterns. Such comparison is enabled by a hybrid CPU-
GPU evolutionary algorithm that makes the problem tractable with a modest
investment in computation resources. The paper is structured as follows: Sec-
tion 2 provides background on RDS, their evolution and parallelization. Section 3
presents our approach to evolving RDS. Section 4 reports our evolution experi-
ments and discusses their results. Section 5 concludes the paper.

2 Reaction-Diffusion Systems

An RDS is a chemical reaction system in which substances react and diffuse in
space. The movement of molecules, their collisions and reactions are stochastic
processes at the microscopic level. At the macroscopic level though (for large
numbers of molecules) the system can be expressed as a set of PDEs describing
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the change in concentrations of substances caused by both reaction and diffusion
effects combined:

∂si(p, t)
∂t

= fi(si(p, t)) + Di∇2si(p, t) (1)

where si is the concentration level at time t of each chemical Si at position
p = (x, y, z). The reaction term fi(si(p, t)) describes the reaction kinetics for
chemical Si at each point p. The diffusion term Di∇2si(p, t) tells how fast each
chemical substance diffuses in space. Di is the diffusion coefficient of Si (a con-
stant scalar in the case of isotropic diffusion), and ∇2 is the Laplacian operator.

In the simplest case, the dynamics of the reaction term (described by the set
of functions fi) follows the Law of Mass Action: it states that, in a well-stirred
reactor, the average speed (or rate) of a chemical reaction is proportional to the
product of the concentrations of its reactants. For n chemicals and m reactions,
the system of differential equations for the reaction terms can be described in
matrix notation as:

ds(t)
dt

= Mv(t) (2)

where M is the stoichiometric matrix of the system, which expresses the net
changes in number of molecules for each species Si, 1 ≤ i ≤ n in each reaction
Rj , 1 ≤ j ≤ m; and v(t) = {v1, ...vj , ...vm} is a vector of rates for each reaction,
for instance, following the Law of Mass Action:

vj = kj

∏

1≤l≤n

s
Me(l,j)

l (3)

where kj is kinetic or rate coefficient of reaction Rj (constant for our purposes),
and Me is the educt stoichiometric matrix where each element Me(l,j) expresses
the consumption of molecules of Sl in reaction Rj . This provides a simple and
automatic way to obtain the system of PDEs from a given set of chemical reac-
tions. The system can then be integrated numerically by discretizing the equation
terms in space and time.

2.1 Activator-Inhibitor Models

Activator-inhibitor models [17] are among the simplest reaction-diffusion sys-
tems known. The experiments described in this paper focus on the automatic
evolution of solutions that fall into this class. The activation-inhibition effect
can be achieved by two interacting morphogens: an activator catalyzes its own
production and produces an inhibitor that inhibits the autocatalytic action of
the activator. Moreover the inhibitor travels faster than the activator, leading
to a short-range activation and long-range inhibition effect that under some
conditions [21] results in the formation of spot and stripe patterns.

Numerous alternative activator-inhibitor models are available in the literature.
A lot is known about specific cases, however much remains to be explored in the
vast design space of reaction-diffusion systems that form given patterns.
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A well-known activator-inhibitor model is the one by Gierer and Mein-
hardt [17], described by the following equations:

∂a

∂t
=

σa2

h
− μaa + ρa + Da∇2a (4)

∂h

∂t
= σa2 − μhh + ρh + Dh∇2h (5)

where a and h are the concentrations of activator (A) and inhibitor (H), respec-
tively; μa and μh are the decay rates for each substance; ρa and ρh are their
inflow rates; Da and Dh are their respective diffusion coefficients.

Note that the inhibition factor 1/h does not stem directly from the Law of
Mass Action. In [28] the corresponding chemical reactions are derived for the
above equations, by introducing a catalyst C that is needed in the autocatalysis
of A but is consumed by H , leading to the expected inhibition effect:

2A
σ−→ 2A + H (6)

C + 2A
k1−→ C + 3A (7)

C + H
k2−→ H (8)

The factor 1/h is obtained by assuming that the catalyst C is in steady state with
constant concentration, and by setting σ = k1ρc/k2 (where ρc is the injection
rate of C). C neither decays (μc = 0) nor diffuses (Dc = 0).

[A] [B] [C]

Fig. 1. Activator-inhibitor pattern

Figure 1 shows a typical pattern formed using our implementation of this
model, using the parameters from [13, 28], namely: σ = 0.02, ρa = ρh = 0,
ρc = 0.1, μa = 0.01, μh = 0.02, μc = 0, k1 = 0.01, k2 = 0.1, Da = 0.005, Dc = 0,
Dh = 0.2. [A], [B] and [C] represent the concentrations of activator, inhibitor and
catalyst, respectively, plotted as heatmaps (colors indicate concentration levels
at each point in space, according to the colorbars to the right of each plot).
One can see that the activator peaks coincide with the inhibitor peaks, which
are smoother. Moreover the activator/inhibitor peaks coincide with the catalyst
valleys, consistent with the fact that the inhibitor consumes such catalyst.
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2.2 Evolving Reaction-Diffusion Solutions

Most interesting RDSs are open systems: they rely on a constant inflow and out-
flow of substances that drives the system away from equilibrium. Moreover they
rely heavily on positive and negative feedback (e.g. activation and inhibition),
and often result in non-linear PDEs. Combined with the high computation de-
mands on their numeric integration, evolving them automatically becomes very
challenging.

The evolution of spot and stripe patterns is presented in [9], via the optimiza-
tion of parameters of transition rules that emulate Turing patterns on a binary
Cellular Automaton (CA). Such CA emulation is simpler and faster than full
RD, but sheds no light on the chemical processes behind the observed patterns.

RD parameter sweeping for biology has been demonstrated in [12] using the
covariance matrix adaptation evolution strategy (CMA-ES), a variant of evo-
lution strategy suitable for sweeping parameters on difficult fitness landscapes.
CMA-ES has also been used for tuning parameters in self-configuring morpho-
genetic modular robots [19] (a system that is loosely inspired by chemistry), and
in the numerical simulation of turbulent fluids [8].

RDS solutions for one-dimensional segmentation (head-tail pattern) were
evolved in [26]. Four models were compared: three parameter sweeping vari-
ants and the evolution of arbitrary differential equations via GP. The equations
obtained by GP performed best, however their actual chemical implementation
was not covered.

Stochastic particle-based (discrete) simulations of RDS have been used in [3]
to study the molecular evolution of replicators. In [3] molecules are strings that
may move in space and react due to complementary substrings, leading to an
emergent evolutionary dynamics in space.

RD controllers for robots were evolved in [5], based on the Gray-Scott system
in one dimension (ring). Chemicals in the RD ring were used to activate the
robot’s motors in response to sensor input. The wiring from the sensors to the
RD ring were evolved (not the actual RDS).

To the best of our knowledge, the use of evolutionary optimization to discover
new chemical reaction networks implementing desired patterns has not been re-
ported so far in the literature (most cases [8, 12, 19] are restricted to parameter
sweeping; novel reaction networks may emerge in [3] but with no assigned com-
putation task; arbitrary equations are evolved in [26] but with no guaranteed
chemical analog). Our contribution represents a step in this direction.

2.3 Reaction-Diffusion on GPU

GPU approaches to parallel PDE solving for advection-reaction-diffusion equa-
tions are discussed and evaluated in [24]. Besides reaction and diffusion, these
systems take into account advection phenomena in which chemicals also move
by fluid transport, such as pollutants in the air or water. An implementation of
reaction-diffusion in three dimensions is reported in [20]. Accompanying source
code is publicly available for both [20, 24], however both are far more elaborate
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than what we needed for our own experiments. Moreover, none of these imple-
mentations covered the execution and fitness evaluation of multiple reaction-
diffusion individuals in parallel on the same GPU card. Therefore we have de-
cided to reimplement our own solution from scratch. To the best of our knowl-
edge, the evolution of RDS on GPUs has not been reported so far.

3 RD Evolutionary Algorithm

In order to cope with the high computation demands of evolving RDS, we have
developed an evolutionary algorithm that runs on the CPU and evaluates the
population of candidate solutions (individuals) on the GPU. Two levels of par-
allelism are exploited: population (multiple individuals on the GPU) and indi-
vidual (parallel PDE integration on a 2D surface).

As a developmental system, an RDS implies a separation of genotype (the
set of reactions that is evolved) and phenotype (the resulting pattern on the
surface). The genotype and phenotype encoding are described in Section 3.1,
the genetic operations applied to the genotype in Section 3.2, and the fitness
evaluation process in Section 3.3.

3.1 Genotype and Phenotype

An individual in the population consists of a genotype, a phenotype and a fitness
value. The genotype or genome encodes the reactions and parameters of the
RDS. The genome of the individuals is shown in Fig. 2(a). It consists of four
elements: the vector of kinetic coefficients k = {k1, ...km} for each reaction; the
vector of diffusion coefficients D = {D1, ...Dn} for each substance; the educt
stoichiometric matrix Me; and the product stoichiometric matrix Mp. Both
matrices have size n × m. An element Me(i, j), respectively Mp(i, j), tells how
many molecules of species i are consumed (resp. produced) in reaction j. For
example, reaction R2 in Fig. 2(a) takes two molecules of S1 and one of S2 to
produce 3 molecules of the last species Sn. The matrices Mp and Me together
describe all the reactions that occur in the system (without their rates kj). The
net stoichiometric matrix M (needed for the PDE integration as shown in Eq. 2)
can then be simply calculated as M = Mp − Me.

The phenotype is the pattern that results from numerically integrating the
PDE of the corresponding genome on a 2D surface of Nx × Ny points (cells)
arranged on a regular grid. More specifically, it corresponds to s(p, t), the set of
n matrices of size Nx×Ny containing the concentrations of each of the n species
at each point p on the surface, at an observed time t. The phenotype changes
in time as the pattern takes shape starting from the initial conditions. After
allowing some initial time for a potential pattern to form, the fitness evaluation
of the individual starts in periodic rounds. At the end of the evaluation period,
the average of all the periodic evaluations is computed, and the obtained fitness
value is assigned to the corresponding individual. At every generation, all the
individuals are evaluated under new, random initial conditions. The same initial
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(a) genome of RD individuals

.

(b) CPU-GPU division of roles

Fig. 2. Elements of the reaction-diffusion CPU-GPU evolutionary algorithm

conditions are applied to all individuals of the same generation, like exposing
them to the same environment. Even if an individual may survive from one
generation to the next, its fitness is re-evaluated under new conditions. Therefore
only those individuals who have a good fitness under all faced situations can
survive in the long run.

3.2 Genetic Operators

Three types of genetic operators are used: mutation, crossover and gene dupli-
cation. The maximum number of chemicals (n) and reactions (m) is constant,
for both parameter and network optimization cases.

For the case of parameter sweeping, only the coefficients in k may be modified
by mutation and crossover (gene duplication is disabled). Since these coefficients
typically vary by several orders of magnitude, they are expressed in scientific
notation, with integer mantissa and exponent fields that may be mutated inde-
pendently. A mutation increments or decrements one of these fields. A circular
crossover is used, in which the vector of coefficients is treated as a ring; two
points are chosen on each parent’s ring and their segments are swapped.

For the case of reaction network evolution, in addition to k, the matrices Me

and Mp may be modified too. A mutation may increment or decrement one
element of Me or Mp, which results in modifying the corresponding chemical
reaction. For instance, incrementing Me(i, j) (resp. Mp(i, j)) means that now an
additional molecule of Si is needed (resp. is produced) in reaction Rj . Circular
crossover can also be applied: in this case, individuals swap the full description of
the affected reaction (Me and Mp columns, plus corresponding rate coefficient).

For network evolution, the population is initialized with random genomes
containing a small number of reactions. Gene duplication may then be used to
create new reactions from existing ones. In this case, the child individual will
contain two identical reactions that may diverge in subsequent mutations.

Currently the diffusion coefficients are taken as fixed, i.e. they are not evolved,
assuming that the diffusion speed is an inherent property of the mobility of the
chemical in the medium due to its shape or size.
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3.3 Fitness Evaluation

Since we are interested in the computation properties of RDS, a task-based fit-
ness function was chosen. This function measures the capacity of the RDS to
perform a desired computation task. The goal is then to maximize the individ-
ual’s performance on this task. The RDS is then regarded as a chemical algorithm
performing a distributed computation. The goal task chosen for this paper is a
distributed cluster head election as described in [28]: the cells where activator
peaks are found in spot patterns are “elected” as “cluster heads” (local leaders)
of their region in space.

The cluster head evaluation function works as follows. First, four cell types are
distinguished: invalid (with concentrations outside bounds, inf (infinity), or nan
(“not a number” numerical error)); peak (valid cell with activator concentration
above a threshold); alive: valid non-peak cell sufficiently close to a peak; dead (a
valid non-peak cell without any nearby peaks). The fitness Φ of a single cell is
then computed by respecting the following relations:

Φ(invalid) < Φ(dead) < Φ(peak) < Φ(alive) (9)

Therefore a pattern containing the maximum number of alive cells has the max-
imum fitness. However, alive cells rely on peak cells, therefore peaks must be
present too. Dead cells must be penalized with a low fitness, but invalid cells
are even worse, so they should receive a larger penalty. The global fitness of
the pattern (individual) is then the sum of the fitness values of all cells on the
surface. The actual Φ values adopted in the experiments are reported in Sec. 4.

In RDS, there is a vast region of the search space in which no patterns occur
[12], or which lead to misbehaving solutions, for instance, solutions that include
autocatalytic reactions that quickly exhaust the available resources and produce
infinity values. In order to eliminate these invalid individuals as soon as possible,
an incremental fitness evaluation approach is adopted, with three stages: First,
the individual is tested for having concentrations within valid bounds. Second, it
is tested for the presence of any non-homogeneous pattern. At the third and last
stage comes the evaluation against the real task according to the above relations
(9). Only when the first stage is overcome can the individual move to the second
stage, and so on.

3.4 CPU-GPU Evolutionary Algorithm

In order to cope with the intensive computation requirements of RD evolu-
tion, the PDE integration and most of the fitness evaluation are delegated to a
GPU card. The resulting hybrid CPU-GPU evolutionary algorithm is shown in
Fig. 2(b).

The initial population is generated on the host computer, together with the
initial conditions for the patterns. The phenotypes are then transferred to the
GPU where they are integrated for pattern formation. PDE integration is im-
plemented as kernel routine on the GPU, where each thread is responsible for
numerically integrating Eq. 1 for one point on the grid of cells.
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The fitness of the obtained patterns is then evaluated on the GPU, as follows:
First, each thread computes the local fitness value of its cell by observing its
concentration values and the concentration values in the nearby cells. After all
threads have completed this step, the first thread of each block computes the sum
of the fitness values of all the cells in the block. These values are then returned
to the CPU, where the fitness of all the blocks is summed up to obtain the
global fitness of the pattern. This process is repeated for a number of evaluation
rounds, at the end of which the fitness of the individual is computed as the
average fitness of all the evaluations.

After all the fitness values are computed, a selection process takes place, dur-
ing which individuals compete in tournaments. The winners of the tournaments
gain the right to reproduce via mutation, crossover and/or gene duplication, in
order to produce the next generation, which is then re-evaluated on the GPU,
and so on, until the maximum amount of generations is reached.

The PDE integration routine deserves special attention since it is the most
computationally demanding part of the evolutionary algorithm. It typically con-
sumes over 99% of the total GPU plus CPU computation time. Therefore it is
important to optimize its performance. For this purpose, the stoichiometric ma-
trices, reaction and diffusion coefficients are placed in the GPU block’s shared
memory. This results in considerable performance improvements, as frequently
reported in the GPU literature. The experiments were run on a host containing
three NVIDIA GTX 480 GPU devices. For the pure PDE integration without
evolution, the typical speedups obtained with the GPU implementation range
from 100 to 180 times the CPU runtime, for one RD individual filling the whole
GPU card (size 128x120 points). A typical evolution run with a population of
150 individuals of 32x32 points over 100 generations still takes around 20 to 50
minutes to complete using the hybrid CPU-GPU evolutionary algorithm pre-
sented (against more than 30 hours on a single CPU), depending on the size of
the reaction networks involved. Since several runs are usually needed in order to
explore the RD design space, such experiments would have been infeasible on a
single CPU.

4 Evolution Experiments

We start by sweeping parameter space for spot patterns using the activator-
inhibitor system shown in Sec. 2.1. We then explore the space of possible reaction
networks leading to such patterns. The results are presented in Secs. 4.1 and 4.2
respectively. Table 1 lists the parameters of the experiments. The population
size, number of generations and grid surface were set to the minimum values
that still showed some evolutionary behavior, while keeping the runtimes short
enough (below one hour per run). The mutation and crossover probabilities were
set to the typical ranges used in GP, whereas the gene duplication probability
was set low enough according to the results in [4]. The tournament size was
set to the minimum, in order to reduce the selection pressure in an attempt
to prevent premature convergence, which was very commonly observed in these
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Fig. 3. Selected parameter sweeping runs (each curve corresponds to one run)

experiments. Indeed, we have observed that increasing the selection pressure
(up to a tournament of size 7) led more often to premature convergence to non-
optimum solutions.

The global fitness of a pattern (sum of the fitness values of each cell) ranges
from zero to the total number of grid cells, i.e. 32x32=1024 for the given setup.
Peaks are points of maximum activator concentration, above a peak threshold
of apeak = 3.0. The distance threshold for a cell to be considered as alive is
dmax = 6 cells from the nearest peak. For each cell type, the values of the task-
based fitness function per cell are: Φ(invalid) = 0; Φ(dead) = 0.25; Φ(peak) = 0.5
if there is another peak at distance less than dmax from itself; Φ(peak) = 0.75
otherwise; Φ(alive) = 1.

Table 1. Parameters of the evolution experiments

Evolution parameters

population size 150 individuals
generations 100
selection method tournament
tournament size 2 individuals
mutation prob. 0.1 per reaction
mutation prob. 0.2 per mating event
crossover prob. 0.8 per mating event
gene dup. prob. 0.04 per mating event

Phenotype parameters

grid surface 32x32 points
PDE integration timestep Δt = 0.1 s
activator peak threshold apeak = 3.0
max. dist. to nearest peak dmax = 6.0
max. valid concentration smax = 100

Fitness evaluation parameters

n. evaluation rounds 10 per indiv.
evaluation start time at t=2000 s
evaluation interval every 200 s

4.1 Sweeping Parameter Spaces

In this set of experiments, we take Reactions 6 to 8 from Sec. 2.1 as given, and let
evolution find matching rate coefficients that lead to spot patterns similar to those
on Fig. 1. The coefficients are allowed to vary within the interval 0 ≤ k < 1000.

Figure 3 shows the best fitness for the 5 runs that gave the best results. Each
curve corresponds to one run. The other runs got stuck at poor fitness values near
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the bottom, and are not shown for better readability of the plots. These poor
runs usually overcome the first fitness stage but either reach flat homogeneous
surfaces with no patterns, unstable patterns, or patterns that do not match the
fitness criteria well enough.

Note that the fitness curves vary widely across runs, hence showing averages
over several runs would make little sense. This is why we have selected a few
runs to plot such as to achieve a compromise between the readability of the plots
and the amount of information conveyed by them.

The best evolved patterns are shown in Fig. 4, where [A], [B] and [C] represent
the concentrations of activator, inhibitor and catalyst, respectively. The rate
coefficients for the best solutions found are shown in Table 2, compared to the
human-designed parameter values shown in Sec. 2.1. The solution producing
Fig. 4 presents tall and narrow activator peaks, and depletes the catalyst almost
entirely. It does that by increasing the rate of autocatalytic production of A,
and increasing the rate of consumption of C by the inhibitor, when compared
to the hand-made case. These narrow peaks are very good for the cluster head
task, since the number of alive cells is maximized. This solution is probably more
efficient than the human-designed case.

[A] [B] [C]

Fig. 4. Evolved patterns for parameter sweeping

Table 2. Evolved vs. hand-made rate coefficients

.

Reactions hand-made Fig. 4

2A + C → 3A + C 1.0e-2 9.4e-2
B + C → B 1.0e-1 3.0e-1

2A → 2A + B 2.0e-2 1.9e-3

Reactions hand-made Fig. 4

∅ → C 1.0e-1 3.1e-2
A → ∅ 1.0e-2 1.5e-2
B → ∅ 2.0e-2 2.0e-2

.

4.2 Exploring New Reaction Networks

We now let the reaction networks evolve, for a set of n = 3 chemicals and
up to m = 4n = 12 reactions, including inflow and decay reactions. All the
individuals have at least n inflow reactions and n decay reactions (one inflow and
one decay reaction for each chemical). These reactions are statically defined and
cannot be added, deleted nor mutated. Only their rate coefficients may change
during evolution. Some coefficients may be imposed. For instance, we disable the
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injection of activator and inhibitor by setting their coefficients to zero, in order
to avoid solutions that “cheat” by artificially injecting these chemicals. We refer
to the remaining up to 2n reactions as the set of evolvable reactions. In order
to avoid unfeasible high-order reactions, when mutating evolvable reactions, the
maximum stoichiometric coefficient per molecule is kept at 3: Me(i, j) ≤ 3 and
Mp(i, j) ≤ 3 ∀i, j; moreover the maximum number of molecules that participate
in a reaction (on either side) is 4:

∑
i Me(i, j) ≤ 4 and

∑
i Mp(i, j) ≤ 4 for all

reactions Rj .
In the initial population, each individual is initialized with a genome con-

taining a single evolvable reaction (plus the default 2n static inflow and decay
reactions). More reactions may appear later as genes duplicate and diverge. In
this way, we start by exploring the search space of smaller, parsimonious solu-
tions, and then let evolution grow more complex solutions if they happen to be
fitter.
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Fig. 5. Selected reaction network evolution runs (each curve corresponds to one run)

Again, a set of 10 runs were performed. Figure 5 shows the best fitness over the
generations, for the 7 runs that made progress. The other 3 runs got stuck at the
bottom of the plot and have been omitted. Compared to parameter evolution
(Fig. 3) a remarkably different qualitative behavior can be noticed: Here the
fitness exhibits periods of stagnation followed by steep jumps. Such profile is
characteristic of indirect phenotype-genotype-fitness encodings, of which RD is
an example, so it should come at no surprise. However, it seems to become
significantly more apparent in network evolution than in parameter evolution. A
tentative explanation for this might be that network evolution has a much larger
range of possibilities of neutral mutations (mutations that have no impact in the
fitness) than parameter evolution. These neutral mutations may accumulate over
time, until they start to play a role in the fitness. This topic deserves a deeper
investigation.

Two of the best evolved patterns are shown in Fig. 6. Their peaks are sharper
than those in the hand-made solution of Fig. 1, and even sharper than in the
case of Fig. 4, consistent with the fitness function that rewards for a maximum
amount of alive cells that must nonetheless be close to a peak. Note that in these
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[A] [B] [C]

[A] [B] [C]

Fig. 6. Patterns stemming from reaction network evolution

Table 3. Two evolved reaction network solutions

Fig. 6 (top)

Reactions k

A + C → 2A + B 6.2
2A → A + 2C 6.4e-2

2A + B + C → B + C 2.3e-2
A + B + C → ∅ 1.0e-1

A + B → ∅ 2.0e-2
B + 2C → A + B + 2C 1.0

Fig. 6 (bottom)

Reactions k

A + 2B + C → A + B 5.0e-3
2C → B + C 0.0

B + 2C → A + C 0.0
2B → A + B + C 1.0

B + 2C → A + 2B + C 1.0
2A + B → 2A + C 2.0e-1

A

3

B

2

2

C

Hand-made

A

2 BC

2
2

2
2

Fig. 6 (top)

B

C

A

22

2

2
2

2

2

Fig. 6 (bottom)

Fig. 7. Best reaction networks evolved (center, right) vs. hand-made solution (left)

solutions the substance C no longer plays the role of catalyst consumed by an
inhibitor, since the peaks of C now coincide with those of A.

The corresponding genomes for the patterns of Fig. 6 are listed in Table 3.
The respective reaction networks are depicted in Fig. 7, compared with the
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hand-made case. Only the evolvable reactions are shown. In this figure, a dot
indicates a reaction, continuous lines indicate educts, continuous arrows indicate
products, dotted arrows indicate catalysis, and numbers indicate stoichiometric
coefficients. We can see that the evolved networks are densely connected and
redundant, i.e. there are many ways to produce and consume each substance.
This is consistent with the fact that the evolved networks must be robust to
mutations in the network topology in order to survive to the next generation.

5 Conclusions

RD evolution is a difficult task with huge computation demands. In this paper
we have presented experimental results that compare parameter sweeping and
reaction network evolution on the activator-inhibitor model. The experiments
were made feasible by the parallelization of fitness evaluation and PDE inte-
gration on GPU hardware. The outcome of our experiments indicates that the
evolutionary dynamics of RD network evolution seems to present remarkable
qualitative differences when compared to RD parameter sweeping. Steep jumps
in fitness are very frequently observed during network evolution, while similar
jumps are only rarely observed in the case of parameter sweeping. This could be
an evidence of punctuated equilibria in the evolution of RD networks, and is a
topic that deserves further investigation.

The present paper covered only very simple spot patterns. The evolution of
more complex patterns will require a number of extensions to our system. Fur-
ther investigation into the genotype and phenotype structures is needed, moving
towards Genetic Regulatory Networks (GRN), and looking at how modularity
could emerge in the corresponding chemical reaction networks [4]. Another envis-
aged extension is to impose mass and energy conservation constraints to reduce
the search space to resource-saving and physically plausible solutions. In order
to evolve vein and leaf patterns [7, 18], the active transport of chemicals is desir-
able, beyond passive diffusion. In order to improve convergence speed and escape
more easily from local optima, another research topic would be the adaptation of
more sophisticated algorithms, such as CMA-ES [12, 19] or the nested evolution
algorithm from [14], to the evolution of reaction networks in the RDS context.
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