
How to Program Artificial Chemistries

Jens Busch and Wolfgang Banzhaf

University of Dortmund,
Department of Computer Science, Chair of Systems Analysis (LS XI)

D-44221 Dortmund, Germany
{busch, banzhaf}@ls11.cs.uni-dortmund.de

http://ls11-www.cs.uni-dortmund.de

Abstract. Using the framework of artificial chemistries (ACs) an au-
tomated theorem prover (ATP) is constructed. Though it is an applica-
tion of its own, in the context of ACs automated theorem proving can
serve a second purpose. In this paper, we present a resolution-based AC
named RESAC. Once converted to the first-order predicate calculus a
problem straightly fits to this non-deterministic AC model. The calculus
therefore provides a general and intuitive language for ”programming”
RESAC. The fixed implicit interaction scheme and predefined structure
of the objects is advantageous and helps to predict the system’s dynam-
ics. Furthermore, the versatility of the methodology is demonstrated by
implementing the Adleman problem. An analysis of the dynamic behav-
ior is performed delivering insight into the synthesis of non-deterministic
emerging processes. This analysis include a discussion of some general
AC parameters.

1 Introduction

Inspired by real chemical processes, artificial chemistries (ACs) follow an in-
triguing computational paradigm. Abstract molecules (objects) interact in an
autonomous, distributed and parallel way. Guided by reaction rules these ob-
jects act on one another, thereby proliferating or altering their information con-
tent or structure. Modified structure may imply a different function according to
the imposed interaction scheme. Consequently, the role of a molecule can change
over time and this way, AC provides a powerful framework to define constructive
systems [10]. The actual state of the system is defined by concentration levels of
molecules. A calculation step itself causes a change of such concentrations.

Formally, an AC is defined by the triple (S, R, A) [11]. S denotes a set of
objects and R a set of interaction rules constituting the reaction schemes applied
whenever molecules collide. The system’s dynamics is controlled by an algorithm
A describing how the rules are applied to a population of molecules. By this
means a closed or an open reactor can be simulated, a well-stirred reaction
vessel with no topology or for example a 3-D space like in [19].

On the one hand, ACs try to answer questions arising in evolution theory.
Here, the emergence of global phenomena in restricted environments initiated

W. Banzhaf et al. (Eds.): ECAL 2003, LNAI 2801, pp. 20–30, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595.276 824.882] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

How to Program Artificial Chemistries 21

by a huge number of reactions among elementary entities is investigated. Results
have been presented e.g. in [3,4,6,12,13,16]. On the other hand, researchers link
theory with practical applications by taking advantage of the similarity between
ACs and other complex dynamic systems (e.g. [2,7,8,15,20]).

A natural definition for many tasks is in terms of elementary interactions
to be performed frequently. But what ”language” should be used to encode a
given task? Even more troublesome is the choice of a molecule representation
and of an interaction scheme if one wants to deal with many problems from
various domains instead of one specific task. In this paper, we present first-order
predicate calculus (FOPC) as a general and intuitive molecule representation.
Combined with resolution logics as an implicitly defined interaction rule we gain
the dynamic system RESAC which can be interpreted in two different ways: (i)
As implementation of an ATP (AC-based ATP). FOPC problem solving belongs
to the class of hardest known problems in computer science, since the validity
of FOPC-formulas is not decidable. In this area previous work was done and
results have been presented in [9]. (ii) As object and reaction rule setup for the
solution of arbitrary tasks (ATP-based AC) by defining both sets S and R.

Here, we are concerned with the second alternative. Regarded as a tool, the
framework of ATP provides RESAC with a fixed setting (S, R), because data
structure and interaction mechanism are defined independent from a specific
task. This simplifies the AC design and the analysis of the system’s dynamics
considerably. However, the specification of an algorithm A is still necessary. In
Sect. 3 we suggest such an algorithm, discuss several variants, and construct
RESAC. As an example, the famous Adleman problem is run in RESAC in Sect.
4, and its dynamics is analyzed.

2 Basic Concepts of Logic and ATP

ATP might be considered one of the oldest branches of Artificial Intelligence.
Given a theory A = {A1, . . . , An} of expressions the task is to proof that an-
other expression T is consistent with theory A (A |= T). Of course, checking
all possible truth-assignments (interpretations) will solve the problem. Unfortu-
nately systems of predicates have a potentially infinite number of interpretations,
therefore this is not a practical approach. The combinatorial explosion of search
space demands another, more sophisticated search strategy. Having an eye on
the syntax instead on the semantics can be helpful to restrict the search space: A
syntactical transformation mapping one expression onto a new expression con-
sistent with the underlying theory is called sound inference rule. If expression T
is producible by a sequence of inference rules operating on both, the theory A
and every expression inferred from A so far, then A |= T holds and T is called
theorem of A. The protocol belonging to the inference sequence is said to be the
proof of A |= T .

To construct RESAC, we will use concepts of FOPC which provides a rep-
resentation for objects, their properties and relations. Note that this calculus is
much more powerful than calculi restricted to Horn clauses used in PROLOG-

22 J. Busch and W. Banzhaf

1

1

2

2 3

3 4

4

1 3 41 3 4 22)(σ

,unify() −>subst σ

Fig. 1. Illustration of the resolution principle Fig. 2. Open, well-stirred reactor

based systems (e.g. [18]). In FOPC, logic expressions can be converted into an
inferentially equivalent conjunction of clauses each being a disjunction of literals.
These are either atomic expressions or negated atomic expressions. |l| denotes
the literal l without polarity.

Regarding RESAC, one inference rule is of special interest: binary resolution
[17]. Given two clauses c1 and c2 with literals l1 ∈ c1 and l2 ∈ c2, a new clause
is inferred by resolution if |l1|,|l2| are unifiable1 and of complementary polarity.
The resolvent is obtained by joining c1 and c2 with the appropriate substitution
applied and eliminating l1 and l2 (Fig. 1 outlines this scheme).

To be more effective, the set-of-support strategy may be applied: In this case,
at least one of {c1, c2} must have support in order to allow a resolution inference.
Every result of an inference inherits the support. Initially, the support is given
to a subset of A.

3 Programming ACs with RESAC

In this section, we shift focus to our resolution-based artificial chemistry, RESAC,
which use concepts of FOPC to define the set of rules R and the set of objects S.
We start the construction of RESAC, however, by defining the third component,
the AC algorithm: The algorithm A driving the reactor M models a well-stirred
reaction vessel (see Fig. 2). Thus arbitrary molecules can collide at any time.
What seems to be an artificial simplification is, however, a concept of chemistry
[14] if parameters like, for example, speed of stirring are chosen appropriately.
Additionally, new start-clauses can feed the reactor—the so-called inflow—at a
certain rate (inflow rate). The size of the vessel is kept constant, i.e. the inflow
equals the dilution flux. An inflow rate i, 0 ≤ i ≤ 1,2 indicates that i ∗ |M | start-
clauses are inserted within one generation which, as usual, is defined to be |M |
collisions (independently of whether a collision causes a reaction or not). There
are two special modes of inflow. First, an inflow rate 0 samples a closed reactor.
Second, if a molecule is allowed to enter every time a reaction is not carried out
(see below), we speak of an elastic inflow.

1 Unification is the operation which is applied to terms in order to match them.
2 synonymously referred to as (i ∗ 100)%-inflow

How to Program Artificial Chemistries 23

in FOPL
statementsproblem

specification

conjunction of clauses

termination criterion
AC

Fig. 3. Conversion steps from the original problem specification to AC

The set of objects S in the reactor covers molecules, each representing a
clause of limited length3. These are arranged in a multiset-like structure [5]
as implementation of the reactor model M . Thus all reactions performed map
to set transformations. Input to RESAC are clauses c1, . . . , cn, called start-
clauses, which are derived from the problem specification (Fig. 3). Initially, the
population holds η copies of each start-clause, and the size of the reactor |M |
equals η ∗ n.

Concluding the description of RESAC, the remainder of this section is de-
voted to the reaction rule setup. The reaction scheme R between colliding
molecules P and Q is given implicitly by the application of the resolution infer-
ence rule. If no resolution is feasible or permitted due to preconditions not met,
the reaction is termed elastic, i.e. it does not take place at all. Otherwise, let
V denote the inferred resolution result.This result is non-deterministic, because
the pair of literals to be resolved is chosen randomly from the set of all resolvable
literal pairs. Depending on a parameter SELECT, a reaction is then defined as
follows:

productive reaction: P + Q =⇒
{

U + V with U ∈ {P, Q} if SELECT=educt
P + Q + V if SELECT=free

The parameter SELECT determines the implemented replacement policy.
If educt replacement is applied the reaction scheme resembles an autocatalytic
reaction with either molecule P or Q being preserved, whereas the other one
is selected to be replaced by V . In contrast, free replacement lets V replace an
arbitrary molecule.

The replacement policy matter is not discussed explicitly in most publica-
tions. Often free replacement is employed without comments on this issue. Al-
though educt replacement may be considered closer to chemistry, it is rarely used
(one exception is e.g. [7]). To reveal some of the differences between both replace-
ment schemes, we investigate a basic setting with only three substances s0, s1, s3,
and simple reaction rule s1+s2 =⇒ s0. Denoting the concentration of a molecule
X at time step t with |X|t, we set (|s1|0, |s2|0, |s0|0) = (a, 1 − a, 0), 0 ≤ a ≤ 1.
The following formulas are derived with t ≥ 0, e stands for educt replacement,
f stands for free replacement:

3 In fact, the imposed restrictions are twofold: Molecules either too big or produced
by too many reactions are not considered stable and are not allowed to be produced.

24 J. Busch and W. Banzhaf

Fig. 4. Concentration transitions induced by s1 + s2 =⇒ s0 in a closed reactor. Expla-
nations see text. Left: Free replacement. Right: Educt replacement

(|s1|ft , |s2|ft , |s0|ft) = (a√
4 (1−a)ta+1

, 1−a√
4 (1−a)ta+1

,

√
4 (1−a)ta+1−1√
4 (1−a)ta+1

)

(|s1|et , |s2|et , |s0|et) =

(a(−1+2 a)et(−1+2 a)

−1+a+et(−1+2 a)a
, − (−1+2 a)(−1+a)

−1+a+et(−1+2 a)a
, 1−∑2

i=1 |si|et) a �= 1
2

(1
t+2 , 1

t+2 , t
t+2) a= 1

2

In Fig. 4 the concentration development is plotted. When educt replacement
is employed, s1 and s2 are consumed completely in order to produce s0 iff |s1|e0 =
|s2|e0. With free replacement, however, limt→∞ |s0|ft = 1 holds for 0 �= a �= 1.
As expected, the global effect of free replacement leads to remarkably different
behavior when leaving the center of the simplex given by (s1, s2). If a = 1

2 , both
variants have the same limits but convergence speed differs. On this issue, in the
next section empirical results of an example are stated.

4 Setup and Analysis – An Example

To demonstrate and analyze RESAC, we reconsider Adleman’s famous experi-
ment in which he initiated the cooperation of computer science and molecular
biology for solving the NP-complete directed Hamiltonian path problem (DHPP)
using DNA parallel processing [1]. Though not complex in the given size, this
problem is suitable for our investigations because of its simple semantical struc-
ture.

Given a directed graph with designated vertices vstart and vend the DHPP
consists of finding a path (a sequence of edges) starting at vstart and ending up
in vend going through each remaining vertex exactly once. The graph shown in
Fig. 5 depicts the graph G Adleman solved at the molecular level. To represent
G in FOPC we have to transfer it to a number of clauses in conjunctive normal
form. Using the function edge() and predicates Path() and Visited() we chose a
tripartite system of clauses (see again Fig. 5). The first functional group is formed
by the specification of the graph. Second, a ”Connector” is introduced which

How to Program Artificial Chemistries 25

(0 → 1) Path(edge(0,1)), -Visited(0), -Visited(1)
(0 → 6) Path(edge(0,6)), -Visited(0), -Visited(6)

. . .
(5 → 2) Path(edge(5,2)), -Visited(5), -Visited(2)
(5 → 6) Path(edge(5,6)), -Visited(5), -Visited(6)

2

3 4
1

6
5

0

(Connector) -Path(edge(X,Y)), -Path(edge(Y,Z)), Path(edge(edge(X,Y),Z))
(Solver) -Path(edge(edge(edge(edge(edge(edge(0,X2),X3),X4),X5),X6),6))

(Termination) -Visited(0), -Visited(1), -Visited(2), . . . , -Visited(5), -Visited(6)
(SolverR1) -Path(edge(0,X2)),-Path(edge(X2,X3)), . . . , -Path(edge(X6,6))
(SolverR2) -Path(edge(edge(edge(edge(edge(edge(X1,X2),X3),X4),X5),X6),X7))

Fig. 5. Representation of the Adleman problem in FOPC

reflects the fact that if two paths X � Y and Y � Z are given also the path
X � Z exists. The solving clause ”Solver” completes the definition of the set of
start-clauses. Although the chosen representation is not optimal (see below) it is
a somehow intuitive approach, and, moreover, it helps us to reveal some hidden
properties of the different variants of RESAC. A simplified view of the solution
process is as follows: The Connector joins pieces of paths to longer paths if
possible. A path vstart � vend with 6 edges unifies and thereby reacts with the
Solver. The Path()-literal is resolved, and a group of Visited()-literals remain.
The terminating query criterion searches for such a group which comprises all
nodes of G. If a reaction product matches this clause, a solution to this DHPP
is found. By giving the support only to the Solver a kind of backward chaining
is employed.

In our experiments we ran RESAC with 6 variants of inflow, 4 different sizes,
and both replacement policies, each of these a 100 times. In Fig. 6 the percentage
of solutions found (success rate), the average generation in which the solution
was found (avg. success gen.), corresponding Std. Dev. and Std. Errors are listed.
From the collected data we deduce 3 statements:

1. Free replacement outperforms or at least equals educt replacement in every
experiment series with respect to a higher success rate, a lower avg. success
gen., and a lower variability.

2. There seems to be an optimal inflow rate iopt, such that for all inflow rates
i > iopt, it holds that the smaller i, the higher the success rate is, but, on
the other hand, for inflow rates i < iopt: the smaller i, the lower the success
rate.

3. With increasing reactor size, the success rate is raising and solutions are
found in earlier generations.

We now discuss these observations in indicated order:
(1): At first, we state the following two definitions which have been found

useful for analyzing the system’s dynamics: To measure the productivity, the
number of productive reactions within one generation is divided by |M |. The
diversity of M is the number of different molecules in M divided by |M |. In

26 J. Busch and W. Banzhaf

i=0

i=0
.01

i=0
.05

i=0
.1

i=0
.2

ela
sti

ci
nf

low

ela
sti

ci
nf

low

i=0
.2

i=0
.1

i=0
.05

i=0
.01 i=0

|M|=2000

|M|=10000

|M|=20000

|M|=30000

0.88 1 1 1 1

0 0

0.55

1

0.27

0.961

0.67

1 1 1 1

0
0

0.54

0.99

0.14

0.87
1

0.48

0.92 1 1 1

0
0

0.33

0.92

0.09

0.65

0.97

0.11
0.4

0.7
0.59

0.45

0
0 0.08

0.3

0.02
0.22

0.56

0.00%

50.00%

100.00%

success rate

educt replacement

free replacement

inflow rate |M | = 2000 |M | = 10000 |M | = 20000 |M | = 30000
free
replacement 0 - - - - - - - - - -

0.01 - - - - 41.2 14.9 1.49 37.3 15.4 1.54
0.05 - 40 16.5 1.65 30.3 11 1.1 26.4 8.4 0.84
0.1 - 35.3 12.9 1.29 27.2 9.4 0.94 25.7 7 0.7
0.2 - 39.8 17.5 1.75 30.4 10.3 1.03 26.1 7.8 0.78

elastic - - - - - - - - - -
educt
replacement 0 - - - - - - - - - -

0.01 - - - - - - - - - -
0.05 - - - - 42.7 13.6 1.36 36.8 10.5 1.05
0.1 - - - - - - - 39.1 12.8 1.28
0.2 - - - - - - - - - -

elastic - - - - - - - - - -

Fig. 6. Adleman experiment in various ACs: i denotes the inflow rate, |M | the reactor
size. Each experiment was repeated a 100 times. Run time was limited to at most 100
generations. In the graph the success rate is compared. A 5%-inflow shows the best
results. In the Table the average success generation (typed in bold), the Std. Dev.
(typed in italic) and the Std. Errors are listed; ”-” indicates that not all experiments
were successful

fact, diversity plays an important role explaining the first observation. Molecule
diversity in reactors employing free replacement is significantly higher than with
educt replacement (Fig. 8 shows examples). This yields a better distribution of
solution candidates (clauses) within the search space.

If we look for the reason we have to go into detail. Listing the concentration
development of all start-clauses in a closed reactor with educt replacement (Fig.
7) reveals the extinction of the Connector at an early stage of the experiment.
As a consequence, productivity rate falls and approaches zero. What is the reason
for this concise extinction of clauses which is a generally observed phenomenon?

How to Program Artificial Chemistries 27

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

nu
m

be
r

of
 s

ta
rt

-c
la

us
es

generation

CONNECTOR

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 20 40 60 80 100

pr
od

uc
tiv

ity
 r

at
e

[%
]

generation

Fig. 7. Analysis of a closed reactor with size 2000 employing educt replacement. Left:
Number of start-clauses. Note the development of the Connector. Right: Productivity
in the same reactor5

 0.3

 0.2

 0.1

 0.4

 0.5

 20 80 100
 0

 0

 0.6

 40 60

i=0.05

i=0.2

i=0.05
i=0.2

free replacement

educt replacement

generation

d
iv

e
rs

it
y

Fig. 8. Diversity in reactors with size 2000. Educt
compared to free replacement. Diversity is signifi-
cantly higher with free replacement. i denotes the
inflow rate4

 100

 90

 80

 70

 60

 50

 40

 30

 20

 10

 0
 0 20 80 100 40 60

i=no

i=0.01

i=0.05

i=0.2

generation

s
ta

rt
−

c
la

u
s
e

s
 [

%
]

Fig. 9. A comparison of inflow
variants i in a reactor with size
2000 employing free replacement4

With educt replacement one of the educts is replaced by the reaction product,
thus, reactive molecules are more often replaced; a reaction pathway cannot be
maintained if there is no inflow of the participating molecules. Moreover, di-
minishing molecules can prohibit the emergence of other pathways. On the other
hand, non-reactive molecules obviously always are involved in elastic reactions
and their concentration remains unchanged (niche building). Presumably useless
most of the time, though, they use reactor space. As already seen in the basic
experiment in the previous section free replacement policy, once again, has a
global impact, thereby inducing a global pressure. But even if the Connector
does not go extinct entirely, free replacement is superior because we observe a
higher diversity of the free replacement reactor variants in open systems as well
(Fig. 8).

(2): The higher the inflow, the higher is the fraction of start-clauses blocking
the system by consuming valuable reactor space (Fig. 9). The elastic inflow

4 A sample of 10 arbitrary runs is plotted simultaneously.

28 J. Busch and W. Banzhaf

variant accompanied by immense inflow demonstrates this impressively (Fig.
10). In contrast, a low inflow rate leads to high diversity and a better covering
of the search space. However, if the chosen inflow rate is too small, relevant
start-clauses diminish which makes their interaction with other molecules a rare
event, thus prolonging the solving process. To make, for example, a closed
reactor successful, the run time and/or reactor size should be increased (see
again Fig. 6). The optimal inflow rate iopt is hard to find in the general case. In
our experiments, a 5%-inflow has proven to be optimal.

(3): By enlarging the reactor, one can compensate for a smaller diversity
caused, for example, by a high inflow rate. In generation 20 a reactor with 20000
molecules and 20%-inflow on average consists of nearly 2000 different molecules,
approx. 3 times more than a 5%-inflow reactor with size 2000. In general, more
molecules are (re)generated each generation (Fig. 11). Consequently, it is more
likely to find a solution in an early stage of an experiment. Recalling the definition
of a generation, however, this does not imply a faster execution. If measured in
reactions, the large-sized reactor performs 10 times more reactions per generation
than its small correspondent, such that a run is slower in terms of computational
time.

Remark 1: Against the background of previous findings we may reconsider our
representation of the Adleman problem. Basically, it has 2 drawbacks. The first
difficulty is that ”junk” clauses may emerge. Clauses considering more than 7
vertices are leading away from the goal. The second problem is the central focus
on the Connector. Without restricting the solution space, one way to improve
the situation is to remove this clause from the initial knowledge base and, instead,
replace the Solver with SolverR1 (Fig. 5). In fact, results improve remarkably:
With educt replacement, 10%-inflow and a reactor with 20100 molecules all 100
runs succeeded. The avg. success gen. is 5.94 (Std. Dev. 2.2). However, due to
the implemented simplifications this artificially designed problem does not show
relevant complexity necessary for representing a general problem.

Remark 2: A slight modification of the Solver lets us find all paths of length
6 (see SolverR2 in Fig. 5) . Every time the termination criteria is matched a
directed Hamiltonian path is found. In this case, RESAC proceeds until a time
limit is exceeded.

5 Conclusion

A computational system was set up whose overall behavior is characterized by
emergent processes. With the resolution-based artificial chemistry RESAC, we
intend to draw attention to the application-oriented branch of ACs, which prob-
ably is not as common as its use as a model ([10],p. 40). In previous publications
the potential of resolution-based ACs was shown by implementing an automated
theorem prover. In this paper, resolution logics enabled us to set up an AC based
on a logic calculus. With this method, problems can be formulated within the
AC framework by conversion to the first-order predicate calculus.

How to Program Artificial Chemistries 29

no start−clauses

only start−clauses

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

generation search space

m
o

le
c
u

le
 f

ra
c
ti
o

n
 [

%
]

Fig. 10. Elastic inflow in a reactor with
size 2000 (free replacement): The graph
shows all clauses the system generates. All
start-clauses have high concentrations—
none of them is located below the plane.
They block the system

Fig. 11. Reaction network in generation
4, free replacement. Each line repre-
sents a reaction. Top: Reactor with 2000
molecules. Bottom: Reactor with 20000
molecules. Much more reaction pathways
and molecules are built

We translated the directed Hamilton path problem presented by Adleman
into FOPC. In 1994, Adleman implemented and solved the problem by means of
DNA-computing, however, not much is revealed about the dynamics of such solv-
ing processes. Here, 48 variants of ACs were analyzed by investigating their dy-
namic behavior. Especially, the question how to proceed with the reaction prod-
uct is addressed. Though these different setups cannot be very easily weighted
against each other we identified some rules how performance of an application-
oriented AC could be increased. These findings and the presented methods of
dynamic system analysis may lead to a better understanding of the choices avail-
able at an early stage of AC design.

The presented system can easily be transferred to parallel computing plat-
forms like multi-processor systems or distributed internet agents due to the in-
herent parallelism. Several realizations are currently under investigation.

Acknowledgments. We are grateful to Jens Ziegler for valuable comments and
useful discussions.

References

1. L. M. Adleman. Molecular computation of solutions to combinatorial problems.
Science, 266:1021–1024, 1994.

2. J. C. Astor and C. Adami. A developmental model for the evolution of artificial
neural networks. Artif. Life, 6(3):189–218, 2000.

3. R. J. Bagley and J. D. Farmer. Spontaneous emergence of a metabolism. In C. G.
Langton, editor, Artificial Life II, Proceedings, Cambridge, MA, 1992. MIT Press.

30 J. Busch and W. Banzhaf

4. R. J. Bagley, J. D. Farmer, and W. Fontana. Evolution of a metabolism. In C. G.
Langton, editor, Artificial Life II, Proceedings, Cambridge, MA, 1992. MIT Press.

5. J.P. Banatre and D. Le Metayer. Programming by multiset transformation. Com-
munications of the ACM, 36(1):98–111, 1993.

6. W. Banzhaf. Self-organisation in a system of binary strings. In R. Brooks and
P. Maes, editors, Proceedings of Artificial Life IV, pages 109–118, Cambridge, 1994.
MIT Press.

7. W. Banzhaf, P. Dittrich, and H. Rauhe. Emergent computation by catalytic reac-
tions. Nanotechnology, 7:307–314, 1996.

8. R.A. Brooks. Coherent behavior from many adaptive processes. In Dave Cliff,
Philip Husbands, Jean-Arcady Meyer, and Steward Wilson, editors, From animals
to animats 3, pages 22–29, Cambridge, MA, 1994. MIT Press.

9. J. Busch. Automated Theorem Proving for first order predicate calculus using
Artificial Chemistries. In GI Gesellschaft für Informatik, editor, Informatiktage
1999, Bad Schussenried, November 1999. Konradin Verlag Robert Kohlhammer
GmbH.

10. P. Dittrich. On Artificial Chemistries. PhD thesis, University of Dortmund, De-
partment of Computer Science, D-44221 Dortmund, Germany, January 2001.

11. P. Dittrich, J. Ziegler, and W. Banzhaf. Artificial Chemistries - a Review. Artificial
Life, 7(3):225–275, 2001.

12. W. Fontana. Algorithmic chemistry. In C. G. Langton, C. Taylor, J. D. Farmer,
and S. Rasmussen, editors, Artificial Life II: Proceedings of the Second Artificial
Life Workshop, pages 159–209. Addison-Wesley, Reading MA, 1991.

13. W. Fontana and L. W. Buss. The barrier of objects: From dynamical systems
to bounded organizations. In J. Casti and A. Karlqvist, editors, Boundaries and
Barriers, pages 56–116. Addison-Wesley, 1996.

14. C.G. Hill. An introduction to chemical engineering kinetics and reactor design.
John Wiley & Sons, 1977.

15. Y. Kanada and M. Hirokawa. Stochastic problem solving by local computation
based on self-organization paradigm. In 27th Hawaii International Conference on
System Science, pages 82–91, 1994.

16. S. A. Kauffman. The Origins of Order. Oxford University Press, New York, 1993.
17. J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle.

Journal of the Association for Computing Machinery, 12(1):23–41, January 1965.
18. T. Szuba and R. Stras. Parallel evolutionary computing with the random PROLOG

processor. Journal of Parallel and Distributed Computing, 47(1):78–85, November
1997.

19. K.-P. Zauner and M. Conrad. Conformation-driven computing: Simulating the
context-conformation-action loop. Supramolecular Science, 5:791–794, 1998.

20. J. Ziegler, P. Dittrich, and W. Banzhaf. Towards a metabolic robot control sys-
tem. In M. Holcombe and R. Paton, editors, Information Processing in Cells and
Tissues. Plenum Press, 1998.

	Introduction
	Basic Concepts of Logic and ATP
	Programming ACs with RESACfuturelet next
	Setup and Analysis -- An Example
	Conclusion

